The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$. Do they span it?

Solution. Yes. Indeed, take $$\beex \bea &\quad (x+y)\otimes (x+y)-x\otimes x-y\otimes y\\ &=x\otimes y+y\otimes x\\ &=\sqrt{2!}x\vee y \eea \eeex$$ for example.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Java字符串之性能优化

    基础类型转化成String 在程序中你可能时常会需要将别的类型转化成String,有时候可能是一些基础类型的值.在拼接字符串的时候,如果你有两个或者多个基础类型的值需要放到前面,你需要显式的将第一个值 ...

  2. Mac环境下装node.js,npm,express;(包括express command not found)

    1. 下载node.js for Mac 地址: http://nodejs.org/download/ 直接下载 pkg的,双击安装,一路点next,很容易就搞定了. 安装完会提醒注意 node和n ...

  3. C#列表顺序替换思想

    /// <summary> /// 显示列顺序 /// </summary> /// <param name="list"></param ...

  4. 1026: [SCOI2009]windy数 - BZOJ

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数?Inp ...

  5. js和HTML结合(补充知识:如何防止文件缓存的js代码)

    来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(二) 使用html标签<script>可以把js嵌入到html页面中,让脚本 ...

  6. spoj 24

    大数  #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> ...

  7. jsp request.getParameterValues获取数组值代码示例

    tt.jsp <form action="tt2.jsp" method="POST"> <select name="two&quo ...

  8. ****JFinal 部署在 Tomcat 下推荐方法

    首先明确一下 JFinal 项目是标准的 java web 项目,其部署方式与普通 java web 项目没有任何差别.Java Web 项目在 Tomcat 下部署有一些不必要的坑需要避免 经常有人 ...

  9. POJ3260——The Fewest Coins(多重背包+完全背包)

    The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...

  10. NPOI的源代码编译

    打开版本库下的examples文件夹 然后打开对应的解决方案文件,尝试编译程序.发现提示缺少了dll 琢磨了半天,找到四个项目文件,打开之后进行编译.最后会生成dll到solution文件夹下的Lib ...