The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$. Do they span it?

Solution. Yes. Indeed, take $$\beex \bea &\quad (x+y)\otimes (x+y)-x\otimes x-y\otimes y\\ &=x\otimes y+y\otimes x\\ &=\sqrt{2!}x\vee y \eea \eeex$$ for example.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. ASP.NET MVC的约定

    ASP.NET MVC 应用程序遵循以下3条约定: 所有的控制器的名称都以Controller结尾,如HomeController, AccountController 这些类默认在Controlle ...

  2. EXTJS4.2 控件之Grid 根据数据源某列数据不同绑定不同的控件setEditor

    Grid 根据数据源某列数据不同绑定不同的控件,例如:文本框和下拉框 主要代码写在grid的  plugins: [rowEditing],下面这是定义的rowEditing对象,这里面的要定义成 E ...

  3. MINA快速传输文件

    最近的项目使用MNA进行文件传输,只能传输到5~7MB/s:但是使用FTP等软件其实可以达到11MB/s,后来使用MINA原生传输,发现可以达到11MB/s,后来发现有以下两点可以需要注意优化: 1. ...

  4. JavaBean 和 Map 之间互相转换

    JavaBean 和 Map 之间互相转换 import java.beans.BeanInfo; import java.beans.IntrospectionException; import j ...

  5. kill 进程卡住,超时kill方法

    还是有漏洞 ,万一 working.py未超时, kill_job.sh 会不会杀死别人的进程啊start.sh#!/bin/bash python working.py &python wo ...

  6. OSUnMapTbl[]的原理

    问题描述:     ucos任务队列中优先级获取 问题解决: uCOS-II是一个多任务的操作系统,每个任务都是一个应用程序,它有自己的寄存器和堆栈空间,即任务控制块TCB(task control ...

  7. Ubuntu 14.04 启用休眠

    Ubuntu 14.04 启用休眠 Ubuntu 14.04 默认不启用关机菜单中的休眠选项.前提是要有swap分区(网上查询,未验证是否一定需要.PS:swap要不小于物理内存)不过首先最好还是确认 ...

  8. ids & hdmi 原理

    http://www.taiwanwebinar.com/zh_TW/STATIC/SITE/dwc_hdmi_tx.pdf http://blog.csdn.net/g_salamander/art ...

  9. 编程添加"作为服务登录”权利(包括例子和API)

    搜索"log on as a service programmatically" https://msdn.microsoft.com/en-us/library/windows/ ...

  10. PHP上传遇到的问题-php 上传大文件主要涉及配置upload_max_filesize和post_max_size两个选项

    今天在做上传的时候出现一个非常怪的问题,有时候表单提交可以获取到值,有时候就获取不到了,连普通的字段都获取不到了,苦思冥想还没解决,最后问了师傅,师傅看了说挺奇怪的,然后问我upload_max_fi ...