[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$. Do they span it?
Solution. Yes. Indeed, take $$\beex \bea &\quad (x+y)\otimes (x+y)-x\otimes x-y\otimes y\\ &=x\otimes y+y\otimes x\\ &=\sqrt{2!}x\vee y \eea \eeex$$ for example.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- Linux操作系统
Linux操作系统 linux源码分析(三)-start_kernel 2016-10-26 11:01 by 轩脉刃, 146 阅读, 收藏, 编辑 前置:这里使用的linux版本是4.8,x86体 ...
- linux系统日志使用
FROM:http://blog.csdn.net/zzxian/article/details/7905964 Part I: syslogd & klogd ---------/etc ...
- PHPCMS搭建wap手机网站
PHPCMS搭建PC端网站比较方便,但是在wap手机端方面却不怎么实用,而且自带的手机建站感觉不是很好,而且模版不好控制,现在对其进行修改,手机建站个人感觉比较方便 首先在phpcms/libs/fu ...
- [Windows Azure] Querying Tables and Entities
Constructing Filter Strings When constructing a filter string, keep these rules in mind: Use the log ...
- (转)基于即时通信和LBS技术的位置感知服务(一):提出问题及解决方案
一.前言.提出问题 公司最近举行2011年度创新设计大赛,快年底了正打算写写2010年以来Android开发的心得与经验,正好同事出了个点子:假如A和B两个人分别在不同的地点,能不能实现这样的功能,让 ...
- SGU 180
求逆序数对 归并排序 #include <cstdio> #include <cstring> #include <cmath> #include <a ...
- 修改MYSQL数据库表的字符集
MySQL 乱码的根源是的 MySQL 字符集设置不当的问题,本文汇总了有关查看 MySQL 字符集的命令.包括查看 MySQL 数据库服务器字符集.查看 MySQL 数据库字符集,以及数据表和字段的 ...
- Android 二维码扫描与生成
由于源代码比较多,本文不进行讲述,请下载源码. 源码来源于网络,请点击这里下载: http://files.cnblogs.com/wuyou/Android%E4%BA%8C%E7%BB%B4%E7 ...
- SPRING IN ACTION 第4版笔记-第九章Securing web applications-002-把用户数据存在memory里(AuthenticationManagerBuilder、 UserDetailsManagerConfigurer.UserDetailsBuilder)
Spring Security is extremely flexible and is capable of authenticating users against virtually any d ...
- 218. The Skyline Problem
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...