FFT

  做的第二道用到FFT的……好吧其实还是模板题-_-b

  百度上说好像分治也能做……不过像FFT这种敲模板的还是省事=。=

  

 /**************************************************************
Problem: 2179
User: Tunix
Language: C++
Result: Accepted
Time:1236 ms
Memory:9184 kb
****************************************************************/ //BZOJ 2179
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
void read(int &v){
v=; int sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
v*=sign;
}
/******************tamplate*********************/
#define debug
const int N=;
const double pi=acos(-1.0);
struct comp{
double r,i;
comp(double _r=0.0,double _i=0.0):r(_r),i(_i){}
// comp(){}
comp operator+(const comp &b)const{return comp(r+b.r,i+b.i);}
comp operator-(const comp &b)const{return comp(r-b.r,i-b.i);}
comp operator*(const comp &b)const{return comp(r*b.r-i*b.i,r*b.i+i*b.r);}
}a[N],b[N],c[N]; void FFT(comp *a,int n,int type){
for(int i=,j=;i<n-;++i){//只需改变1~n-2,0和n-1两个位置不变
for(int s=n;j^=s>>=,~j&s;);
if (i<j) swap(a[i],a[j]);
}
for(int m=;m<n;m<<=){
double u=pi/m*type; comp wm(cos(u),sin(u));
for(int i=;i<n;i+=(m<<)){
comp w(,);
rep(j,m){
comp &A=a[i+j+m],&B=a[i+j],t=w*A;
A=B-t; B=B+t; w=w*wm;
}
}
}
if (type==-) rep(i,n) a[i].r/=n;
}
char s1[N],s2[N];
int ans[N];
int main(){
int n,k;
read(n);
scanf("%s%s",s1,s2);
rep(i,n){
a[i].r=s1[n-i-]-'';
b[i].r=s2[n-i-]-'';
}
for(k=;k<=n*;k<<=);
FFT(a,k,); FFT(b,k,);
F(i,,k) c[i]=a[i]*b[i];
FFT(c,k,-);
F(i,,n*)
ans[i]=c[i].r+0.4;
int temp=;
F(i,,n*){
if (ans[i]) temp=i;
ans[i+]+=ans[i]/;
ans[i]%=;
}
D(i,temp,) printf("%d",ans[i]);
return ;
}

【BZOJ】【2179】FFT快速傅里叶的更多相关文章

  1. BZOJ 2179 FFT快速傅里叶

    fft. #include<set> #include<map> #include<ctime> #include<queue> #include< ...

  2. BZOJ 2179 FFT快速傅立叶 题解

    bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...

  3. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  4. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  5. bzoj 2179 FFT快速傅立叶 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...

  6. 【刷题】BZOJ 2179 FFT快速傅立叶

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  7. BZOJ 2179 FFT快速傅立叶 ——FFT

    [题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...

  8. BZOJ 2179 FFT模板

    思路:FFT板子题 //By SiriusRen #include <cstdio> #include <complex> using namespace std; typed ...

  9. bzoj 2179 FFT

    求两个高精度的乘法. 根据高位低位,填入多项式的系数,求两个卷积,然后进位操作.

随机推荐

  1. 2014028-jQuery与正则表达式[转]

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. windows下 berkerly db的安装配置(修正了关键步骤)

    这个是我从别人的博客上找来的,亲测可用,确实解决了我当时遇到的一些问题. 首先,从http://www.oracle.com/technology/global/cn/software/product ...

  3. 3月3日(6) Climbing Stairs

    原题 Climbing Stairs 求斐波那契数列的第N项,开始想用通项公式求解,其实一个O(n)就搞定了. class Solution { public: int climbStairs(int ...

  4. Amazon Kinesis Producer Library 使用记录

    Amazon Kinesis 是一种托管的服务,用于有弹性与扩展性的实时处理大规模的流数据.该服务收集大数据记录流,多个可在 Amazon EC2 实例上运行的数据处理应用程序随后可实时使用此流. 在 ...

  5. WPF 绑定一(数据源为控件)

    xaml: <Window x:Class="WpfApplication1.Window1" xmlns="http://schemas.microsoft.co ...

  6. QQ互联OAuth2.0 .NET SDK 发布以及网站QQ登陆示例代码(转)

    OAuth: OAuth(开放授权)是一个开放标准,允许用户授权第三方网站访问他们存储在另外的服务提供者上的信息,而不需要将用户名和密码提供给第三方网站或分享他们数据的所有内容. QQ登录OAuth2 ...

  7. WordPress 主题开发 - (一) 前言 待翻译

    原文出自: http://themeshaper.com/2012/10/22/the-themeshaper-wordpress-theme-tutorial-2nd-edition/ THE TH ...

  8. 《PHP和MySQL Web开发》精彩的地方收录

    1.用SESSION来做的购物车,做成数组,用isbn对应书的数量作为二维数组保存 $new GET传值加入购物车,submit是修改数量,提交后的表单,通过历遍原来的数组,对应isbn修改最新的数量 ...

  9. protected internal修饰符

    见过这样的修饰符,但是没有仔细考虑过,今天做一个小练习. 先给出一个链接,别人在网上讨论的:http://wenku.baidu.com/view/4023f65abe23482fb4da4cfe.h ...

  10. 无限的hypotheses 变成有限的dichotomies

    给定任意D,它是某些H的Bad Sample(即Ein和Eout不接近)的概率为: 即H中备选函数的数量M=|H|越少,样本数据量N越大,则样本成为坏样本的概率越小.在一个可接受的概率水平上,学习算法 ...