Dynamic Rankings

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112

Description

The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.

Your task is to write a program for this computer, which

- Reads N numbers from the input (1 <= N <= 50,000)

- Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change some a[i] to t.

Input

The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.

The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format

Q i j k or
C i t

It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.

There're NO breakline between two continuous test cases.

Output

For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],..., a[j])

There're NO breakline between two continuous test cases.

Sample Input

2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6
3
6

HINT

题意

动态第k大

1. Q x y k,查询区间[x,y]第k大的数是啥

2. C x y,把第x个数变成y

题解:

树套树

在每一个区间里面,我们都套入一个Treap/Splay就好了

1操作很简单,暴力进行二分就好了,我们在[L,R]区间所在的Treap里面查询Rank

2操作,在所有这个数所在的区间,我们都删除原来的,再加入新的就好了

代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<ctime>
using namespace std; #define maxn 1000001
int tmp = ;
////////////////treap
struct Treap
{
int root[maxn],sz,s[maxn],ls[maxn],rs[maxn],v[maxn],w[maxn],rnd[maxn];
void init()
{
memset(root,,sizeof(root));
sz=;
}
void Updata(int k)
{
s[k]=s[ls[k]]+s[rs[k]]+w[k];
}
void Rturn(int &k)
{
int t;
t=ls[k],ls[k]=rs[t],rs[t]=k,s[t]=s[k];
Updata(k);k=t;
}
void Lturn(int &k)
{
int t;
t=rs[k],rs[k]=ls[t],ls[t]=k,s[t]=s[k];
Updata(k);k=t;
}
void Insert(int &k,int num)
{
if(!k)
{
k=++sz;s[k]=w[k]=;ls[k]=rs[k]=;rnd[k]=rand();
v[k]=num;return;
}
s[k]++;
if(v[k]==num)w[k]++;
else if(num<v[k])
{
Insert(ls[k],num);
if(rnd[ls[k]]<rnd[k])
Rturn(k);
}
else
{
Insert(rs[k],num);
if(rnd[rs[k]]<rnd[k])
Lturn(k);
}
}
void Del(int &k,int num)
{
if(v[k]==num)
{
if(w[k]>){
w[k]--;
s[k]--;
return;
}
if(ls[k]*rs[k]==)
k=ls[k]+rs[k];
else if(rnd[ls[k]]<rnd[rs[k]])
Rturn(k),Del(k,num);
else
Lturn(k),Del(k,num);
}
else if(num<v[k]){
Del(ls[k],num);
s[k]--;
}
else{
Del(rs[k],num);
s[k]--;
}
}
void Find(int k,int num)
{
if(!k)return;
if(v[k]<=num){
tmp+=s[ls[k]]+w[k];
Find(rs[k],num);
}
else Find(ls[k],num);
}
}Tr; ///////////////////// /////////////////////线段树 void Seg_insert(int k,int l,int r,int x,int num)
{
Tr.Insert(Tr.root[k],num);
if(l==r)return;
int mid=(l+r)/;
if(x<=mid)Seg_insert(k*,l,mid,x,num);
else Seg_insert(k*+,mid+,r,x,num);
} void Seg_change(int k,int l,int r,int x,int Now,int Pre)
{
Tr.Del(Tr.root[k],Pre);
Tr.Insert(Tr.root[k],Now);
if(l==r)return;
int mid=(l+r)/;
if(x<=mid)Seg_change(k*,l,mid,x,Now,Pre);
else Seg_change(k*+,mid+,r,x,Now,Pre);
}
void Seg_query(int k,int l,int r,int L,int R,int num)
{
if(l==L&&r==R)
{
Tr.Find(Tr.root[k],num);
return;
}
int mid = (l+r)/;
if(mid>=R)
Seg_query(k*,l,mid,L,R,num);
else if(mid<L)
Seg_query(k*+,mid+,r,L,R,num);
else{
Seg_query(k*,l,mid,L,mid,num);
Seg_query(k*+,mid+,r,mid+,R,num);
}
}
///////////////////////////
int a[maxn];
int main()
{
srand(time(NULL));
int t;scanf("%d",&t);
while(t--)
{
Tr.init();
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
Seg_insert(,,n,i,a[i]);
}
char op[];
for(int i=;i<=m;i++)
{
scanf("%s",op);
if(op[]=='C')
{
int x,y;scanf("%d%d",&x,&y);
Seg_change(,,n,x,y,a[x]);
a[x]=y;
}
else
{
int x,y,z;scanf("%d%d%d",&x,&y,&z);
int l = ,r = 1e9;
while(l<=r)
{
int mid = (l+r)/;
tmp = ;Seg_query(,,n,x,y,mid);
if(tmp>=z)r=mid-;
else l=mid+;
}
printf("%d\n",l);
}
}
}
}

zoj 2112 Dynamic Rankings 动态第k大 线段树套Treap的更多相关文章

  1. ZOJ 2112 Dynamic Rankings(动态区间第 k 大+块状链表)

    题目大意 给定一个数列,编号从 1 到 n,现在有 m 个操作,操作分两类: 1. 修改数列中某个位置的数的值为 val 2. 询问 [L, R] 这个区间中第 k 大的是多少 n<=50,00 ...

  2. 整体二分&cdq分治 ZOJ 2112 Dynamic Rankings

    题目:单点更新查询区间第k大 按照主席树的思想,要主席树套树状数组.即按照每个节点建立主席树,然后利用树状数组的方法来更新维护前缀和.然而,这样的做法在实际中并不能AC,原因即卡空间. 因此我们采用一 ...

  3. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  4. 整体二分(SP3946 K-th Number ZOJ 2112 Dynamic Rankings)

    SP3946 K-th Number (/2和>>1不一样!!) #include <algorithm> #include <bitset> #include & ...

  5. ZOJ 2112 Dynamic Rankings (动态第k大,树状数组套主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  6. ZOJ 2112 Dynamic Rankings(主席树の动态kth)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112 The Company Dynamic Rankings ...

  7. ZOJ - 2112 Dynamic Rankings(BIT套主席树)

    纠结了好久的一道题,以前是用线段树套平衡树二分做的,感觉时间复杂度和分块差不多了... 终于用BIT套函数式线段树了过了,120ms就是快,此题主要是卡内存. 假设离散后有ns个不同的值,递归层数是l ...

  8. BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings

    以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...

  9. zoj 2112 Dynamic Rankings(主席树&amp;动态第k大)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

随机推荐

  1. 四、oracle基本sql语句和函数详解

    一.oracle常用数据类型 一.  数据定义语言(ddl) 数据定义语言ddl(data definition language)用于改变数据库结构,包括创建.更改和删除数据库对象. 用于操纵表结构 ...

  2. ASIHttpRequest编译不通过

    转:http://blog.sina.com.cn/s/blog_67a5e47201014tof.html Undefined symbols for architecture i386:   &q ...

  3. Android:实现一种浮动选择菜单的效果

    总结如何实现Android浮动层,主要是dialog的使用. 自定义一个类继承自Dialog类,然后在构造方法中,定义这个dialog的布局和一些初始化信息. 案例1: public class Me ...

  4. Delphi 操作Word怎么控制光标的位置

    unit ControlWordS; interface uses Classes, Sysutils, Word97; type  TControlWord = class(TComponent)  ...

  5. http://blog.csdn.net/jbb0403/article/details/42102527

    http://blog.csdn.net/jbb0403/article/details/42102527

  6. Fitnesse+RestFixture:Web服务回归测试利器

    RestFixture是Fitness的一个测试REST服务的插件,用于调用标准的http GET/POST等请求方法,并可以用XPath语法和Javascript语法检验http响应.本文介绍安装运 ...

  7. opencv人脸检测分类器训练小结

    这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行 ...

  8. 【原】Storm分布式RPC

    5. Storm高级篇 序列化 分布式RPC High level overview LinearDRPCTopologyBuilder Local mode DRPC Remote mode DRP ...

  9. C#快速排序详解

    使用快速排序法对一列数字进行排序的过程 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). 步骤为: 从数列中挑出一个元素,称 ...

  10. ACM1995

    /* 汉诺塔V Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...