题目描述

  某校开展了同学们喜闻乐见的阳光长跑活动。为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动。一时间操场上熙熙攘攘,摩肩接踵,盛况空前。
  为了让同学们更好地监督自己,学校推行了刷卡机制。
  学校中有n个地点,用1到n的整数表示,每个地点设有若干个刷卡机。
  有以下三类事件:
  1、修建了一条连接A地点和B地点的跑道。
  2、A点的刷卡机台数变为了B。
  3、进行了一次长跑。问一个同学从A出发,最后到达B最多可以刷卡多少次。具体的要求如下:
  当同学到达一个地点时,他可以在这里的每一台刷卡机上都刷卡。但每台刷卡机只能刷卡一次,即使多次到达同一地点也不能多次刷卡。
  为了安全起见,每条跑道都需要设定一个方向,这条跑道只能按照这个方向单向通行。最多的刷卡次数即为在任意设定跑道方向,按照任意路径从A地点到B地点能刷卡的最多次数。

输入

  输入的第一行包含两个正整数n,m,表示地点的个数和操作的个数。
  第二行包含n个非负整数,其中第i个数为第个地点最开始刷卡机的台数。
  接下来有m行,每行包含三个非负整数P,A,B,P为事件类型,A,B为事件的两个参数。
  最初所有地点之间都没有跑道。
  每行相邻的两个数之间均用一个空格隔开。表示地点编号的数均在1到n之间,每个地点的刷卡机台数始终不超过10000,P=1,2,3。

输出

  输出的行数等于第3类事件的个数,每行表示一个第3类事件。如果该情况下存在一种设定跑道方向的方案和路径的方案,可以到达,则输出最多可以刷卡的次数。如果A不能到达B,则输出-1。

样例输入

9 31
10 20 30 40 50 60 70 80 90
3 1 2
1 1 3
1 1 2
1 8 9
1 2 4
1 2 5
1 4 6
1 4 7
3 1 8
3 8 8
1 8 9
3 8 8
3 7 5
3 7 3
1 4 1
3 7 5
3 7 3
1 5 7
3 6 5
3 3 6
1 2 4
1 5 5
3 3 6
2 8 180
3 8 8
2 9 190
3 9 9
2 5 150
3 3 6
2 1 210
3 3 6

样例输出

-1
-1
80
170
180
170
190
170
250
280
280
270
370
380
580

提示

数据规模及约定

  对于100%的数据,m<=5n,任意时刻,每个地点的刷卡机台数不超过10000。N<=1.5×105

可以发现对于每一个边双只要能走进这个边双那么边双里面所有点就都能到达。

将每个边双缩成一个点,用LCT来维护缩点后的树。

因此连边可以分成两种情况讨论:

1、当两点联通但不属于同一个边双时,那么加入这条边之后这两点及两点之前路径上的点组成了一个新的边双,在LCT上dfs这些路径上的点将他们的大小合并到新形成的边双代表的点上并将这些点删除。

2、当两点不连通时,这时连接两点不会出现新的边双,直接在LCT上连接两点即可。

用两个并查集,分别维护每个点属于哪个边双及点与点之间的连通性。注意点之间连通性不能用LCT的find找(会TLE),而要用并查集。

因为每个点和边最多只会被删除一次也就是只会被dfs一次,所以时间复杂度是O((n+m)*logn)

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pr pair<int,int>
#define ll long long
using namespace std;
int g[150010];
int fa[150010];
int f[150010];
int s[150010][2];
int v[150010];
int sum[150010];
int size[150010];
int st[150010];
int r[150010];
int n,m;
int opt;
int x,y;
int find(int x)
{
if(fa[x]==x)
{
return x;
}
return fa[x]=find(fa[x]);
}
int judge(int x)
{
if(g[x]==x)
{
return x;
}
return g[x]=judge(g[x]);
}
int is_root(int rt)
{
return rt!=s[find(f[rt])][0]&&rt!=s[find(f[rt])][1];
}
int get(int rt)
{
return rt==s[find(f[rt])][1];
}
void pushup(int rt)
{
sum[rt]=sum[s[rt][0]]+sum[s[rt][1]]+size[rt];
}
void pushdown(int rt)
{
if(r[rt])
{
swap(s[rt][0],s[rt][1]);
r[s[rt][0]]^=1;
r[s[rt][1]]^=1;
r[rt]^=1;
}
}
void rotate(int rt)
{
int fa=find(f[rt]);
int anc=find(f[fa]);
int k=get(rt);
if(!is_root(fa))
{
s[anc][get(fa)]=rt;
}
s[fa][k]=s[rt][k^1];
f[s[fa][k]]=fa;
s[rt][k^1]=fa;
f[fa]=rt;
f[rt]=anc;
pushup(fa);
pushup(rt);
}
void splay(int rt)
{
int top=0;
st[++top]=rt;
for(int i=rt;!is_root(i);i=find(f[i]))
{
st[++top]=find(f[i]);
}
for(int i=top;i>=1;i--)
{
pushdown(st[i]);
}
for(int fa;!is_root(rt);rotate(rt))
{
if(!is_root(fa=find(f[rt])))
{
rotate(get(fa)==get(rt)?fa:rt);
}
}
}
void access(int rt)
{
for(int x=0;rt;x=rt,rt=find(f[rt]))
{
splay(rt);
s[rt][1]=x;
pushup(rt);
}
}
void reverse(int rt)
{
access(rt);
splay(rt);
r[rt]^=1;
}
void link(int x,int y)
{
reverse(x);
f[x]=y;
}
void dfs(int x,int rt)
{
fa[x]=rt;
if(s[x][0])
{
dfs(s[x][0],rt);
}
if(s[x][1])
{
dfs(s[x][1],rt);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
size[i]=v[i];
sum[i]=v[i];
fa[i]=i;
g[i]=i;
}
while(m--)
{
scanf("%d%d%d",&opt,&x,&y);
int fx=find(x);
int fy=find(y);
if(opt==1)
{
if(fx!=fy)
{
if(judge(fx)!=judge(fy))
{
link(fx,fy);
g[g[fx]]=g[fy];
}
else
{
reverse(fx);
access(fy);
splay(fy);
size[fy]=sum[fy];
dfs(fy,fy);
s[fy][0]=0;
}
}
}
else if(opt==2)
{
splay(fx);
size[fx]+=y-v[x];
sum[fx]+=y-v[x];
v[x]=y;
}
else
{
if(judge(fx)!=judge(fy))
{
printf("-1\n");
}
else
{
reverse(fx);
access(fy);
splay(fy);
printf("%d\n",sum[fy]);
}
}
}
}

BZOJ2959长跑——LCT+并查集(LCT动态维护边双连通分量)的更多相关文章

  1. BZOJ4998星球联盟——LCT+并查集(LCT动态维护边双连通分量)

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成 联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两 ...

  2. BZOJ4229选择——LCT+并查集+离线(LCT动态维护边双连通分量)

    题目描述 现在,我想知道自己是否还有选择. 给定n个点m条边的无向图以及顺序发生的q个事件. 每个事件都属于下面两种之一: 1.删除某一条图上仍存在的边 2.询问是否存在两条边不相交的路径可以从点u出 ...

  3. 【bzoj2959】长跑 LCT+并查集

    题目描述 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上熙熙攘攘,摩肩接踵,盛况空前.为了 ...

  4. BZOJ 2959 长跑 (LCT+并查集)

    题面:BZOJ传送门 当成有向边做的发现过不去样例,改成无向边就忘了原来的思路.. 因为成环的点一定都能取到,我们把它们压成一个新点,权值为环上所有点的权值和 这样保证了图是一颗森林 每次询问转化为, ...

  5. bzoj4998 星球联盟 LCT + 并查集

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...

  6. 【bzoj4998】星球联盟 LCT+并查集

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两个 ...

  7. 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...

  8. bzoj 3669: [Noi2014]魔法森林(并查集+LCT)

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  9. 【BZOJ2959】长跑 (LCT+并查集)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室 ...

随机推荐

  1. Android 绘制一个Loading动画__向图片中缓慢填充颜色,从而形成动画效果

    需求:制作一个加载动画,向一个不规则图片图形中从从下到上依次填充颜色,形成动画效果. 效果如下:     代码如下: LoadingAnimatorView.java package cn.yw.li ...

  2. BP浅谈

    之前一直对BP的理解不透彻,这可不行,这个可是超经典的广泛应用在ML中的求偏导的方法.本博来自<神经网络与机器学习>P86页. 在用到bp的地方我们都是为了使用梯度下降法,并求出他的偏导数 ...

  3. chrome浏览器添加vue-devtools扩展

    1,在百度网盘中下载压缩包,网盘地址:https://pan.baidu.com/s/1i6UdvCD,密码:nvfe 2,将压缩包解压到F盘,F:\chromeVue插件 3,复制文件地址,F:\c ...

  4. NOIP2002-2017提高组题解

    给个人认为比较难的题目打上'*' NOIP2002(clear) //一个很吼的贪心题,将平均数减掉之后从左往右将影响消除 #include<bits/stdc++.h> using na ...

  5. 实现Repeater控件的记录单选

    有朋友问及,在Repeater控件中第一列放置一个RadioButton,实现对记录的单选. 下面Insus.NET想举个例子来实现与说明. 为Repeater控件准备数据: 在ASPX网页上,写好R ...

  6. LiveCharts文档-4基本绘图-3其他

    原文:LiveCharts文档-4基本绘图-3其他 4基本绘图-3其他 因为每个图表的使用方法大同小异,所以不再啰嗦重复,具体直接看这个链接里的介绍.原文链接 其他的图表类型有 基本堆叠图 基本条形图 ...

  7. css实现按钮固定在底部

    实现类似如下图的功能: 采用如下的样式来控制:

  8. [Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误

    [Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误 在Data Gaurd 的 Standby (或 CDB 是 Read Only ...

  9. hibernate 解决 java.lang.NoClassDefFoundError: Could not initialize class org.hibernate.validator.internal.engine.xxx 这类的问题

    <!-- 解决 java.lang.NoClassDefFoundError: Could not initialize class org.hibernate.validator.intern ...

  10. Redis+TwemProxy(nutcracker)集群方案部署记录

    Twemproxy 又称nutcracker ,是一个memcache.Redis协议的轻量级代理,一个用于sharding 的中间件.有了Twemproxy,客户端不直接访问Redis服务器,而是通 ...