我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn)$求出来

然后我们让g[i]是长度为i的不降子序列的个数,答案就是$\sum{g[i]*(N-i)!-g[i+1]*(N-i-1)!*(i+1)}$

解释一下,因为他求的是不同的操作个数,所以我们给g[i]乘个(N-i)!,表示删的顺序;但其实我们有可能删的时候已经删出来了一个不降子序列。类似地,删多的的不同操作数是g[i+1]*(N-i-1)!,但我们还要从中再挑一个删下去,才和我们现在做的吻合,所以要乘个(i+1)

(数据中貌似有0,然后我的zz离散化写法就华丽丽地T了)

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
using namespace std;
const int maxn=,mod=1e9+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,M,f[maxn][maxn],num[maxn];
pa A[maxn];
int tr[maxn],fac[maxn]; inline int lowbit(int x){return x&(-x);}
inline void add(int x,int y){
for(;x<=M;x+=lowbit(x)) tr[x]=(tr[x]+y)%mod;
}
inline int query(int x){
int re=;for(;x;x-=lowbit(x)) re=(re+tr[x])%mod;return re;
} int main(){
int i,j,k;
N=rd();fac[]=;
for(i=;i<=N;i++){
A[i]=make_pair(rd(),i);
fac[i]=(1LL*fac[i-]*i)%mod;
}sort(A+,A+N+);
for(i=,j=;i<=N;i++){
if(A[i].first!=A[i-].first||i==) j++;
num[A[i].second]=j;
}M=j;
for(i=;i<=N;i++) f[][i]=;
f[][]=N;
for(i=;i<=N;i++){
memset(tr,,sizeof(tr));
f[i][]=;
for(j=i;j<=N;j++){
add(num[j-],f[i-][j-]);
f[i][j]=query(num[j]);
f[i][]=(f[i][]+f[i][j])%mod;
}
}int ans=;
for(i=;i<=N;i++){
if(!f[i][]) break;
ans=((0LL+ans+(1LL*f[i][]*fac[N-i]%mod)-(1LL*f[i+][]*fac[N-i-]%mod)*(i+)%mod)%mod+mod)%mod;
}printf("%d\n",(ans+mod)%mod);
return ;
}

bzoj4361 isn (dp+树状数组+容斥)的更多相关文章

  1. BZOJ.4361.isn(DP 树状数组 容斥)

    题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...

  2. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  3. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  4. 树形DP+树状数组 HDU 5877 Weak Pair

    //树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...

  5. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  6. 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组

    题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...

  7. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  8. bzoj4361 isn(树状数组优化dp+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 938  Solved: 485[Submit][Status][Discuss] ...

  9. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

随机推荐

  1. MySQL的启动程序

    1.mysqld:             mysql server [root@test bin]# ./mysqld --user=mysql & [root@test bin]# ps ...

  2. Visual Studio平台安装及测试

    一.VS安装 图1.1 图1.2 二.单元测试练习 题目:课本22~25页单元测试练习 1.创建一个c#类(具体如下:打开VS2010,然后点击VS界面上左上角的文件按钮,然后点击文件—新建—项目,就 ...

  3. [BUAA软工]第一次结对作业

    [BUAA软工]结对作业 本次作业所属课程: 2019BUAA软件工程 本次作业要求: 结对项目 我在本课程的目标: 熟悉结对合作,为团队合作打下基础 本次作业的帮助:理解一个c++ 项目的开发历程 ...

  4. Can't find model 'en'

    在使用 nlp = spacy.load("en") 报错OSError: Can't find model 'en' 应该用 python -m spacy download e ...

  5. Java计算器(结对)

    一:题目简介 我们要做的是一个多功能计算器,Java程序编辑器是:图形界面.线程.流与文件等技术的综合应用. 图形界面的实现:考虑到简单.实用.高效等特点,就选择了Swing来完成实现,在选择组件上, ...

  6. git学习心得

    https://github.com/zhangxinn/test/tree/master 自己虽然在课堂上有认真的听老师讲解如何使用github,包括怎样在线学习,怎样在github上建立自己的仓库 ...

  7. 关于摄影O2O的前期准备

    更新内容暂时在这位同学的博客:http://www.cnblogs.com/ys1101/

  8. android 活动的生命周期

    掌握活动的生命周期非常重要,因为一个正常的android应用,会有很多的活动,如何在这些活动之间进行切换.数据的交互等,就经常会用到活动的生命周期这一块的知识.可以说,只要掌握了活动的生命周期,才能更 ...

  9. Filter学习:项目第八阶段

      public interface Filter A filter is an object that performs filtering tasks on either the request ...

  10. how-is-docker-different-from-a-normal-virtual-machine[Docker与VirtualMachine的区别]

    https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine 被 ...