bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn)$求出来
然后我们让g[i]是长度为i的不降子序列的个数,答案就是$\sum{g[i]*(N-i)!-g[i+1]*(N-i-1)!*(i+1)}$
解释一下,因为他求的是不同的操作个数,所以我们给g[i]乘个(N-i)!,表示删的顺序;但其实我们有可能删的时候已经删出来了一个不降子序列。类似地,删多的的不同操作数是g[i+1]*(N-i-1)!,但我们还要从中再挑一个删下去,才和我们现在做的吻合,所以要乘个(i+1)
(数据中貌似有0,然后我的zz离散化写法就华丽丽地T了)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
using namespace std;
const int maxn=,mod=1e9+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,M,f[maxn][maxn],num[maxn];
pa A[maxn];
int tr[maxn],fac[maxn]; inline int lowbit(int x){return x&(-x);}
inline void add(int x,int y){
for(;x<=M;x+=lowbit(x)) tr[x]=(tr[x]+y)%mod;
}
inline int query(int x){
int re=;for(;x;x-=lowbit(x)) re=(re+tr[x])%mod;return re;
} int main(){
int i,j,k;
N=rd();fac[]=;
for(i=;i<=N;i++){
A[i]=make_pair(rd(),i);
fac[i]=(1LL*fac[i-]*i)%mod;
}sort(A+,A+N+);
for(i=,j=;i<=N;i++){
if(A[i].first!=A[i-].first||i==) j++;
num[A[i].second]=j;
}M=j;
for(i=;i<=N;i++) f[][i]=;
f[][]=N;
for(i=;i<=N;i++){
memset(tr,,sizeof(tr));
f[i][]=;
for(j=i;j<=N;j++){
add(num[j-],f[i-][j-]);
f[i][j]=query(num[j]);
f[i][]=(f[i][]+f[i][j])%mod;
}
}int ans=;
for(i=;i<=N;i++){
if(!f[i][]) break;
ans=((0LL+ans+(1LL*f[i][]*fac[N-i]%mod)-(1LL*f[i+][]*fac[N-i-]%mod)*(i+)%mod)%mod+mod)%mod;
}printf("%d\n",(ans+mod)%mod);
return ;
}
bzoj4361 isn (dp+树状数组+容斥)的更多相关文章
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 218 Solved: 126 Description 给出一个长度为n的序列A( ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- bzoj4361 isn(树状数组优化dp+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 938 Solved: 485[Submit][Status][Discuss] ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
随机推荐
- STM32串口打印输出乱码的解决办法
前言 最近在试用uFUN开发板,下载配套的Demo程序,串口数据输出正常,当使用另一个模板工程,调用串口printf调试功能时,输出的却是乱码,最后发现是外部晶振频率不一样.很多STM32开发板都是使 ...
- 限流——spring-cloud-zuul-ratelimit
先留个坑,慢慢补 git代码Demo:https://github.com/islowcity/spring-cloud-zuul-ratelimiter.git 有时间再写分析
- springboot+thymeleaf刨坑——首页加载js/css等失败解决方法
在使用thymeleaf加载css或js样式,当我们进入登录页的时候发现,所有的样式都是加载失败的.原因是在新版中有这样一个坑……: 当我们设置了addInterceptors-注册拦截器的时候,通常 ...
- SpringBoot日记——ElasticSearch全文检索
看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...
- UPC-5063-二分图最大匹配
好吧二分图的最小点覆盖=最大匹配 这道题也就变成模板题了... 写一个提醒,在写二分图时,尽量清零操作清空为-1,比如这个题,匹配数组girl[]如果清空为0,代表每个点都与0点连接,但是实际上是并没 ...
- Week2 代码复查
代码复查 http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/ 这篇博客 ...
- BugPhobia终章篇章:学霸在线系统Beta阶段展示
0x00 :序言 1 universe, 9 planets, 204 countries,809 islands, 7 seas, and i had the privilege to meet y ...
- linux 第七周 总结及实验
姬梦馨 原创作品 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 第七周 Linux内核如何装载和启动一 ...
- 20135316Linux内核学习笔记第八周
20135316王剑桥<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 一.进程调度与进程调度的时机分析 ...
- 06-java学习-方法的学习
方法定义 方法类型 方法涉及的知识: 修饰符.返回类型,命名规则,参数列表 方法常见错误 方法概念的深入理解 为什么会有方法? 方法帮助解决哪些问题? 方法可以简化复杂问题的解决