题意

题目链接

Sol

暴力做法是\(O(n^3)\)枚举三个点然后check一下是否能包含所有点

考虑一种随机算法,首先把序列random_shuffle一下。

然后我们枚举一个点\(i\),并维护一个当前的圆。

再枚举一个点\(j\),如果该点在圆内继续,否则用\(i, j\)构造出的圆替换出之前的圆。

再枚举一个点\(k\),如果该点在圆内继续,否则用\(i, j, k\)构造出一个新的圆。

这样的期望复杂度是O(n)的(不会证)

一开始我以为这样做的正确性有点问题,也就是说可能找到一个不优的解。但是显然是不对的,因为如果有更优的解且面积比当前小的话,这个解最起码要包含当前的不优解的三个点,是矛盾的。

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10;
int N;
double R;
struct Point {
double x, y;
}p[MAXN], C;
double sqr(double x) {
return x * x;
}
double dis(Point a, Point b) {
return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}
void MakeC(Point p1, Point p2, Point p3) {
double a = p2.x - p1.x,
b = p2.y - p1.y,
c = p3.x - p1.x,
d = p3.y - p1.y,
e = (sqr(p2.x) - sqr(p1.x) + sqr(p2.y) - sqr(p1.y)) / 2,
f = (sqr(p3.x) - sqr(p1.x) + sqr(p3.y) - sqr(p1.y)) / 2;
C.x = (e * d - b * f) / (a * d - b * c);
C.y = (a * f - e * c) / (a * d - b * c);
R = dis(C, p1);
}
int main() {
cin >> N;
for(int i = 1; i <= N; i++) scanf("%lf %lf", &p[i].x, &p[i].y);
random_shuffle(p + 1, p + N + 1);
for(int i = 1; i <= N; i++) {
if(dis(p[i], C) < R) continue;
C = p[i]; R = 0;
for(int j = 1; j <= i - 1; j++) {
if(dis(p[j], C) < R) continue;
C.x = (p[i].x + p[j].x) / 2.0;
C.y = (p[i].y + p[j].y) / 2.0;
R = dis(C, p[j]);
for(int k = 1; k <= j - 1; k++) {
if(dis(p[k], C) < R) continue;
MakeC(p[i], p[j], p[k]);
}
}
}
printf("%.10lf\n", R);
printf("%.10lf %.10lf", C.x, C.y);
return 0;
}

洛谷P1742 最小圆覆盖(计算几何)的更多相关文章

  1. (bzoj1337 || 洛谷P1742 最小圆覆盖 )|| (bzoj2823 || 洛谷P2533 [AHOI2012]信号塔)

    bzoj1337 洛谷P1742 用随机增量法.讲解:https://blog.csdn.net/jokerwyt/article/details/79221345 设点集A的最小覆盖圆为g(A) 可 ...

  2. 洛谷 P1742 最小圆覆盖 (随机增量)

    题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...

  3. 洛谷P1742 最小圆覆盖(计算几何)

    题面 传送门 题解 之前只是在抄题解--这篇才算是真正自己想的吧-- 首先我们把输入序列给\(random\)一下防止出题人好心送你一个毒瘤序列 我们设\(r\)为当前最大半径,\(o\)为此时对应圆 ...

  4. 最小圆覆盖(洛谷 P1742 增量法)

    题意:给定N个点,求最小圆覆盖的圆心喝半径.保留10位小数点. N<1e5: 思路:因为精度要求较高,而且N比较大,所以三分套三分的复杂度耶比较高,而且容易出错. 然是写下增量法吧. 伪代码加深 ...

  5. 洛谷CF1071E Rain Protection(计算几何,闵可夫斯基和,凸包,二分答案)

    洛谷题目传送门 CF题目传送门 对于这题,我无力吐槽. 虽然式子还是不难想,做法也随便口胡,但是一些鬼畜边界情况就是判不对. 首先显然二分答案. 对于每一个雨滴,它出现的时刻我们的绳子必须落在它上面. ...

  6. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  7. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  8. P1742 最小圆覆盖(计算几何)

    体验过\(O(n^3)\)过\(10^5\)吗?快来体验一波当\(wys\)的快感吧\(QAQ\) 前置芝士1:二元一次方程组求解 设 \[\begin{cases}a1 * x + b1*y=c1\ ...

  9. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

随机推荐

  1. 背水一战 Windows 10 (80) - 本地化

    [源码下载] 背水一战 Windows 10 (80) - 本地化 作者:webabcd 介绍背水一战 Windows 10 之 本地化 Demo 改变语言 示例1.演示本地化的基本应用Localiz ...

  2. 47_并发编程-线程python实现

    一.Threading模块   1.线程的创建 - 方式一 from threading import Thread import time def sayhi(name): time.sleep(2 ...

  3. 从零开始的程序逆向之路 第一章——认识OD(Ollydbg)以及常用汇编扫盲

    作者:Crazyman_Army 原文来自:https://bbs.ichunqiu.com/thread-43041-1-1.html 0×00 序言: 1.自从上次笔者调戏完盗取文件密码大黑客后, ...

  4. speex与webrtc回声消除小结

    回声消除AEC包含:   延时估计对齐+线性自适应滤波器+NLP(双讲检测.处理)+舒适噪声CNG 一.speex aec 1.没有NLP 2.只考虑实时DSP系统,即是没有延时对齐等 3.自适应滤波 ...

  5. typescript 的安装

    1.全局安装 typeScript 包       npm install typescript -g (tsc -v 查看ts版本)2.解决模块的声明文件问题   npm install @type ...

  6. 排序算法系列:插入排序算法JAVA版(靠谱、清晰、真实、可用、不罗嗦版)

    在网上搜索算法的博客,发现一个比较悲剧的现象非常普遍: 原理讲不清,混乱 啰嗦 图和文对不上 不可用,甚至代码还出错 我总结一个清晰不罗嗦版: 原理: 和选择排序类似的是也分成“已排序”部分,和“未排 ...

  7. xshell 会话管理器快捷键

    有没有发现xshell6关闭左边的会话管理器以后,打开就比较麻烦 那么可以自定义一个快捷键来打开: 然后输入一个快捷键 类型选择 菜单-->然后找会话管理器 完事儿 也可以自定义其他快捷键.自己 ...

  8. 005. Asp.Net Routing与MVC 之三: 路由在MVC的使用

    上次讲到请求如何激活Controller和Action,这次讲下MVC中路由的使用.本次两个关注点: 遗留:ModelBinder.BindModel的过程 MVC中路由的使用 MVC 5中的Acti ...

  9. 【OSX】build AOSP 2.3.7时的build error解决

    原始的error log: ============================================ PLATFORM_VERSION_CODENAME=REL PLATFORM_VE ...

  10. 详解C#异常处理

    一.程序运行时产生的错误通过使用一种称为异常(Exception)的机制在程序中传递,通过异常处理(Exception Handling)有助于处理程序运行过程中发生的意外或异常情况:异常可由CLR和 ...