Kafka实战-数据持久化
1.概述
经过前面Kafka实战系列的学习,我们通过学习《Kafka实战-入门》了解Kafka的应用场景和基本原理,《Kafka实战-Kafka Cluster》一文给大家分享了Kafka集群的搭建部署,让大家掌握了集群的搭建步骤,《Kafka实战-实时日志统计流程》一文给大家讲解一个项目(或者说是系统)的整体流程,《Kafka实战-Flume到Kafka》一文给大家介绍了Kafka的数据生产过程,《Kafka实战-Kafka到Storm》一文给大家介绍了Kafka的数据消费,通过Storm来实时计算处理。今天进入Kafka实战的最后一个环节,那就是Kafka实战的结果的数据持久化。下面是今天要分享的内容目录:
- 结果持久化
- 实现过程
- 结果预览
下面开始今天的分享内容。
2.结果持久化
一般,我们在进行实时计算,将结果统计处理后,需要将结果进行输出,供前端工程师去展示我们统计的结果(所说的报表)。结果的存储,这里我们选择的是Redis+MySQL进行存储,下面用一张图来展示这个持久化的流程,如下图所示:

从途中可以看出,实时计算的部分由Storm集群去完成,然后将计算的结果输出到Redis和MySQL库中进行持久化,给前端展示提供数据源。接下来,我给大家介绍如何实现这部分流程。
3.实现过程
首先,我们去实现Storm的计算结果输出到Redis库中,代码如下所示:
package cn.hadoop.hdfs.storm; import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry; import redis.clients.jedis.Jedis;
import cn.hadoop.hdfs.util.JedisFactory;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple; /**
* @Date Jun 10, 2015
*
* @Author dengjie
*
* @Note Calc WordsCount eg.
*/
public class WordsCounterBlots implements IRichBolt { /**
*
*/
private static final long serialVersionUID = -619395076356762569L; OutputCollector collector;
Map<String, Integer> counter; @SuppressWarnings("rawtypes")
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
this.counter = new HashMap<String, Integer>();
} public void execute(Tuple input) {
String word = input.getString(0);
Integer integer = this.counter.get(word);
if (integer != null) {
integer += 1;
this.counter.put(word, integer);
} else {
this.counter.put(word, 1);
}
for (Entry<String, Integer> entry : this.counter.entrySet()) {
// write result to redis
Jedis jedis = JedisFactory.getJedisInstance("real-time");
jedis.set(entry.getKey(), entry.getValue().toString()); // write result to mysql
// ...
}
this.collector.ack(input);
} public void cleanup() {
// TODO Auto-generated method stub } public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub } public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
} }
注:这里关于输出到MySQL就不赘述了,大家可以按需处理即可。
4.结果预览
在实现持久化到Redis的代码实现后,接下来,我们通过提交Storm作业,来观察是否将计算后的结果持久化到了Redis集群中。结果如下图所示:

通过Redis的Client来浏览存储的Key值,可以观察统计的结果持久化到来Redis中。
5.总结
我们在提交作业到Storm集群的时候需要观察作业运行状况,有可能会出现异常,我们可以通过Storm UI界面来观察,会有提示异常信息的详细描述。若是出错,大家可以通过Storm UI的错误信息和Log日志打印的错误信息来定位出原因,从而找到对应的解决办法。
6.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
Kafka实战-数据持久化的更多相关文章
- 漫游Kafka设计篇之数据持久化
Kafka大量依赖文件系统去存储和缓存消息.对于硬盘有个传统的观念是硬盘总是很慢,这使很多人怀疑基于文件系统的架构能否提供优异的性能.实际上硬盘的快慢完全取决于使用它的方式.设计良好的硬盘架构可以和内 ...
- Docker数据持久化及实战(Nginx+Spring Boot项目+MySQL)
Docker数据持久化: Volume: (1)创建mysql数据库的container docker run -d --name mysql01 -e MYSQL_ROOT_PASSWORD= my ...
- .Net Redis实战——事务和数据持久化
Redis事务 Redis事务可以让一个客户端在不被其他客户端打断的情况下执行多个命令,和关系数据库那种可以在执行的过程中进行回滚(rollback)的事务不同,在Redis里面,被MULTI命令和E ...
- iOS开发——项目实战总结&数据持久化分析
数据持久化分析 plist文件(属性列表) preference(偏好设置) NSKeyedArchiver(归档) SQLite 3 CoreData 当存储大块数据时你会怎么做? 你有很多选择,比 ...
- DataPipeline |《Apache Kafka实战》作者胡夕:Apache Kafka监控与调优
胡夕 <Apache Kafka实战>作者,北航计算机硕士毕业,现任某互金公司计算平台总监,曾就职于IBM.搜狗.微博等公司.国内活跃的Kafka代码贡献者. 前言 虽然目前Apache ...
- Kafka实战分析(一)- 设计、部署规划及其调优
1. Kafka概要设计 kafka在设计之初就需要考虑以下4个方面的问题: 吞吐量/延时 消息持久化 负载均衡和故障转移 伸缩性 1.1 吞吐量/延时 对于任何一个消息引擎而言,吞吐量都是至关重要的 ...
- 《Apache Kafka实战》读书笔记-调优Kafka集群
<Apache Kafka实战>读书笔记-调优Kafka集群 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.确定调优目标 1>.常见的非功能性要求 一.性能( ...
- 《Apache kafka实战》读书笔记-管理Kafka集群安全之ACL篇
<Apache kafka实战>读书笔记-管理Kafka集群安全之ACL篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想必大家能看到这篇博客的小伙伴,估计你对kaf ...
- 《Apache Kafka 实战》读书笔记-认识Apache Kafka
<Apache Kafka 实战>读书笔记-认识Apache Kafka 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.kafka概要设计 kafka在设计初衷就是 ...
随机推荐
- 20175234 《Java程序设计》第二周学习总结(二)
学习内容总结 运算符与表达式 If语句.switch语句 break和continue语句 数组和for语句 IDEA的安装和调试 教材学习中的问题和解决过程 在第一次使用IDEA中出现了一些情况,在 ...
- rabbitmq shovel插件
官网说明https://www.rabbitmq.com/shovel.html#management-status 启用shovel插件命令: rabbitmq-plugins enable rab ...
- Python之ftp服务器
今天把做的ftp服务器过程总结一下,先看看要求 一.需求 1. 用户加密认证 2. 允许同时多用户登录 3. 每个用户有自己的家目录 ,且只能访问自己的家目录 4. 对用户进行磁盘配额,每个用户的可用 ...
- [JAVA]JAVA章4 Thread Dump如何分析
一.Thread Dump介绍 1.1什么是Thread Dump? Thread Dump是非常有用的诊断Java应用问题的工具.每一个Java虚拟机都有及时生成所有线程在某一点状态的thread- ...
- Eclipse GBK批量转UTF-8插件(转)
最近需要把Android项目转Android Studio,由于之前是eclipse开发,而且坑爹的是编码还是GBK的,转到Android Studio中文都是乱码,如果一个文件一个文件ctrl+c的 ...
- C++标准库第二版笔记 1
C++标准库第二版笔记 1 C++ std历史 第一份标准化文档: C++98 & C++03 & TR1 TR1 Information Technology- Programmin ...
- centos7.2 下 nginx 开机启动
1.在系统服务目录里创建nginx.service文件 1 vi /lib/systemd/system/nginx.service 内容如下 1 2 3 4 5 6 7 8 9 10 11 12 1 ...
- w9 Ansible批量管理与维护
Ansible是2013年推出的一种通用自动化工具,可用于配置管理或工作流程自动化.配置管理是一种“基础架构代码”实践,它将事物编码,例如应该在系统上安装什么包和版本,或者应该运行什么守护进程.工作流 ...
- Codeforces828 D. High Load
D. High Load time limit per test 2 seconds memory limit per test 512 megabytes input standard input ...
- 如何将他人的SOPC工程转换为自己可以使用的工程
上篇文章的程序源码在:http://download.csdn.net/detail/noticeable/9921952 源码错误现象: 在下载源码文件解压后,打开系统工程,可以看到quartus ...