gym 101081 gym F. Auction of Services 最小生成树+倍增LCA
2.0 s
256 MB
standard input
standard output
It is becoming more common to use strategies based on social networks for shopping, contract services, arrange meetings, etc. Such strategies often involve interesting mathematical knowledge, like Game Theory. A new trend has appeared, the use of social networks to carry out virtual auctions to contract services. The service providers have agreements between them that enforce a service to cost a predetermine value. The prices a company charges, when it works in collaboration with each of its partners, can be very different, since many factors such as location, previous partnerships, tradition, etc. influence the convenience of a particular partnership.
In this problem you want to estimate the price of a service given by a couple of service providers. It is already known the price of the service given by some companies that have an agreement to work together. Furthermore, if we have two companies A and B, we can contract a service (offered by them) using a chain of companies c1, c2, ... ck, such that
- ci and ci + 1 have an agreement, for i = 1, ..., k - 1,
- c1 = A and ck = B.
Also, we know that the price to contract such chain of companies, is the highest price of a service given by a pair of adjacent companies in that chain. That's the power of social networks!

In the previous figure, despite the fact that the price of the agreement between A and C is 13, the best price (in the network that links these companies) is 9, using the agreements through B.
Your task is to help these virtual auctions. The person interested in contracting a certain service chooses a pair of companies he want to contract, and you need to make a program that answers the minimum possible price of that service.
The first line contains two integers N and M, the number of companies and agreements, respectively. The companies are numbered from 1 to N. Each of the following M lines contains three integers, the ith contains Ai, Bi and Ci, indicating that there is an agreement between companies Ai and Bi whose price is Ci. Each pair of companies has at most one agreement. It is guaranteed it is possible to contract a service between any pair of companies.
The next line contains an integer Q, the number of queries. The following Q lines contain a pair of integers representing the companies which we want to contract.
Limits
- 2 ≤ N ≤ 105
- 1 ≤ M ≤ 2·105
- 1 ≤ Ai ≠ Bi ≤ N
- 1 ≤ Ci ≤ 106
- 1 ≤ Q ≤ 2·105
Print Q integers representing the price of the service for each query.
4 4
1 2 6
1 3 1
2 4 2
3 4 2
2
1 2
1 4
2
2
4 4
1 2 1
2 3 7
2 4 3
3 4 4
4
1 3
1 4
3 2
4 2
4
3
4
3
题意:无向带权图,找一个点到另一个点的边权最大值最小;
思路:最小生成树:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。
显然先构造一颗最小生成树,然后类似LCA的求法求两个点之间的最大值;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0));
struct is
{
int u,v,w;
bool operator <(const is &c)const
{
return w<c.w;
}
}a[N<<];
int faT[N];
int Find(int x)
{
return x==faT[x]?x:faT[x]=Find(faT[x]);
}
vector<pair<int,int> >edge[N];
int fa[N][],ma[N][],deep[N];
void dfs(int u,int fat)
{
for (int i=; i<= ;i++) {
if(deep[u]<(<<i)) break;
fa[u][i] = fa[fa[u][i-]][i-];
ma[u][i] = max(ma[fa[u][i-]][i-],ma[u][i-]);
}
for (int i=;i<edge[u].size();i++)
{
int v=edge[u][i].first;
int w=edge[u][i].second;
if(v==fat) continue;
deep[v]=deep[u]+;
fa[v][]=u;
ma[v][]=w;
dfs(v,u);
}
}
int RMQ_LCA(int x,int y) {
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y],ans=;
for (int i=; i<= ;i++)
if((<<i)&d) ans=max(ans,ma[x][i]),x=fa[x][i];
for (int i=; i>= ;i--) {
if(fa[x][i]!=fa[y][i]) {
ans=max(ans,ma[x][i]),ans=max(ans,ma[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if(x==y) return ans;
else return max(ans,max(ma[y][],ma[x][]));
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
faT[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+,a++m);
for(int i=;i<=m;i++)
{
int x=Find(a[i].u);
int z=Find(a[i].v);
if(x!=z)
{
edge[a[i].u].push_back(make_pair(a[i].v,a[i].w));
edge[a[i].v].push_back(make_pair(a[i].u,a[i].w));
faT[x]=z;
}
}
dfs(,);
int q;
scanf("%d",&q);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",RMQ_LCA(u,v));
}
return ;
}
gym 101081 gym F. Auction of Services 最小生成树+倍增LCA的更多相关文章
- 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集
[题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...
- 【bzoj3732】Network 最小生成树+倍增LCA
题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...
- 【bzoj4242】水壶 BFS+最小生成树+倍增LCA
题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...
- 训练指南 UVA - 11354(最小生成树 + 倍增LCA)
layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...
- BFS+最小生成树+倍增+LCA【bzoj】4242 水壶
[bzoj4242 水壶] Description JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有 ...
- BZOJ 3732 Network —— 最小生成树 + 倍增LCA
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 <= N <= 15, ...
- codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)
官方题解: If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- codevs 1519 过路费 最小生成树+倍增
/*codevs 1519 过路费 最小生成树+倍增*/ #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- MongoDB数据导出
在bin目录下(没有设置环境变量), mongoexport -d Structure_Patents_infos -c patents_texts -o D:\Postgraduate\Python ...
- Oracle课程档案。第十一天
读一致性:oracle通过多版本与闪回机制保证读一致性.保证从某个时间点开始查询是一致的.在Oracle中主要通过SCN版本号来控制系统修改的版本,典型的例子是我们可以通过在同一个查询中得到同一个对象 ...
- java中的静态代理和动态代理
1.动态代理的定义:为其他对象提供一个代理以控制对这个对象的访问 代理类主要负责委托类的预处理消息,过滤消息,把消息传给委托类以及消息事后处理 按照代理类的创建时期,代理类可以分为2种:静态代理类(在 ...
- 做一个vue的todolist列表
<template> <div id="app"> <input type="text" v-model="todo&q ...
- 记一次windows服务开发中遇到的问题
最近在研究windows service和quartz.net,所以迅速在园子大神那里扒了一个demo,运行,安装一切顺利. 但在在App.config配置中增加了数据库连接字符串配置后,服务安装后无 ...
- en-zh(社会问题)social problems-2
让屏幕代替父母陪孩子?世卫组织:这样是不对的! No sedentary screen time for babies, WHO says Babies and toddlers should not ...
- docker单机网络类型
docker单机网络类型概述 Docker 安装时会自动在 host 上创建三种网络 分别为 bridge host none . 可用 docker network ls 命令查看 ...
- java框架之Hibernate(2)-持久化类&主键生成策略&缓存&事务&查询
持久化类 概述 持久化:将内存中的对象持久化到数据库中的过程就是持久化.Hibernate 就是用来进行持久化的框架. 持久化类:一个 Java 对象与数据库的表建立了映射关系,那么这个类在 Hibe ...
- javascript常用的操作
1.concat() 连接两个或更多的数组,并返回一个新的数组.注意:该方法不会改变原数组 var arry1=["李四",“王二”]: var arry2=['赵柳',“李旺 ...
- outlook2016用Exchange轻松绑定腾讯企业邮箱
系统版本:Win10 X64 1709 英文版 邮箱:Outlook2016 背景知识: 1.发送邮件均使用SMTP协议(SMTP 全称“Simple Mail Transfer Protocol”, ...