gym 101081 gym F. Auction of Services 最小生成树+倍增LCA
2.0 s
256 MB
standard input
standard output
It is becoming more common to use strategies based on social networks for shopping, contract services, arrange meetings, etc. Such strategies often involve interesting mathematical knowledge, like Game Theory. A new trend has appeared, the use of social networks to carry out virtual auctions to contract services. The service providers have agreements between them that enforce a service to cost a predetermine value. The prices a company charges, when it works in collaboration with each of its partners, can be very different, since many factors such as location, previous partnerships, tradition, etc. influence the convenience of a particular partnership.
In this problem you want to estimate the price of a service given by a couple of service providers. It is already known the price of the service given by some companies that have an agreement to work together. Furthermore, if we have two companies A and B, we can contract a service (offered by them) using a chain of companies c1, c2, ... ck, such that
- ci and ci + 1 have an agreement, for i = 1, ..., k - 1,
- c1 = A and ck = B.
Also, we know that the price to contract such chain of companies, is the highest price of a service given by a pair of adjacent companies in that chain. That's the power of social networks!
In the previous figure, despite the fact that the price of the agreement between A and C is 13, the best price (in the network that links these companies) is 9, using the agreements through B.
Your task is to help these virtual auctions. The person interested in contracting a certain service chooses a pair of companies he want to contract, and you need to make a program that answers the minimum possible price of that service.
The first line contains two integers N and M, the number of companies and agreements, respectively. The companies are numbered from 1 to N. Each of the following M lines contains three integers, the ith contains Ai, Bi and Ci, indicating that there is an agreement between companies Ai and Bi whose price is Ci. Each pair of companies has at most one agreement. It is guaranteed it is possible to contract a service between any pair of companies.
The next line contains an integer Q, the number of queries. The following Q lines contain a pair of integers representing the companies which we want to contract.
Limits
- 2 ≤ N ≤ 105
- 1 ≤ M ≤ 2·105
- 1 ≤ Ai ≠ Bi ≤ N
- 1 ≤ Ci ≤ 106
- 1 ≤ Q ≤ 2·105
Print Q integers representing the price of the service for each query.
4 4
1 2 6
1 3 1
2 4 2
3 4 2
2
1 2
1 4
2
2
4 4
1 2 1
2 3 7
2 4 3
3 4 4
4
1 3
1 4
3 2
4 2
4
3
4
3
题意:无向带权图,找一个点到另一个点的边权最大值最小;
思路:最小生成树:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。
显然先构造一颗最小生成树,然后类似LCA的求法求两个点之间的最大值;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0));
struct is
{
int u,v,w;
bool operator <(const is &c)const
{
return w<c.w;
}
}a[N<<];
int faT[N];
int Find(int x)
{
return x==faT[x]?x:faT[x]=Find(faT[x]);
}
vector<pair<int,int> >edge[N];
int fa[N][],ma[N][],deep[N];
void dfs(int u,int fat)
{
for (int i=; i<= ;i++) {
if(deep[u]<(<<i)) break;
fa[u][i] = fa[fa[u][i-]][i-];
ma[u][i] = max(ma[fa[u][i-]][i-],ma[u][i-]);
}
for (int i=;i<edge[u].size();i++)
{
int v=edge[u][i].first;
int w=edge[u][i].second;
if(v==fat) continue;
deep[v]=deep[u]+;
fa[v][]=u;
ma[v][]=w;
dfs(v,u);
}
}
int RMQ_LCA(int x,int y) {
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y],ans=;
for (int i=; i<= ;i++)
if((<<i)&d) ans=max(ans,ma[x][i]),x=fa[x][i];
for (int i=; i>= ;i--) {
if(fa[x][i]!=fa[y][i]) {
ans=max(ans,ma[x][i]),ans=max(ans,ma[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if(x==y) return ans;
else return max(ans,max(ma[y][],ma[x][]));
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
faT[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+,a++m);
for(int i=;i<=m;i++)
{
int x=Find(a[i].u);
int z=Find(a[i].v);
if(x!=z)
{
edge[a[i].u].push_back(make_pair(a[i].v,a[i].w));
edge[a[i].v].push_back(make_pair(a[i].u,a[i].w));
faT[x]=z;
}
}
dfs(,);
int q;
scanf("%d",&q);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",RMQ_LCA(u,v));
}
return ;
}
gym 101081 gym F. Auction of Services 最小生成树+倍增LCA的更多相关文章
- 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集
[题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...
- 【bzoj3732】Network 最小生成树+倍增LCA
题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...
- 【bzoj4242】水壶 BFS+最小生成树+倍增LCA
题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...
- 训练指南 UVA - 11354(最小生成树 + 倍增LCA)
layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...
- BFS+最小生成树+倍增+LCA【bzoj】4242 水壶
[bzoj4242 水壶] Description JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有 ...
- BZOJ 3732 Network —— 最小生成树 + 倍增LCA
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 <= N <= 15, ...
- codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)
官方题解: If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- codevs 1519 过路费 最小生成树+倍增
/*codevs 1519 过路费 最小生成树+倍增*/ #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- HttpClient学习记录-系列2(源码学习)
如何阅读第三方工具源码? 存在多个入口,而且整个类图存在很多孤岛,自上而下的分析策略貌似不行,还是从use case入手,针对单个面分析.难点是如何做范围界定?不至于陷入黑洞 HttpGet -- ...
- Python学习之旅(十九)
Python基础知识(18):面向对象高级编程(Ⅰ) 使用__slots__:限制实例的属性,只允许实例对类添加某些属性 (1)实例可以随意添加属性 (2)某个实例绑定的方法对另一个实例不起作用 (3 ...
- ES6 Map 与 Set
Map 对象 Map 对象保存键值对.任何值(对象或者原始值) 都可以作为一个键或一个值. Maps 和 Objects 的区别 一个 Object 的键只能是字符串或者 Symbols,但一个 Ma ...
- keepalived实现高可用
准备: 1.A-centos(192.168.6.177) 端口为9898的服务 2.B-ubuntu(192.168.6.182) 端口为9898的服务 3.keepalived安装包https ...
- 20190404 Informatic 学习一
ETL 1. Informatic 下载 下载地址:https://edelivery.oracle.com/osdc/faces/Home.jspx,没有账号可以自己注册一个Oracle账号. 不得 ...
- Session实现原理分析
http://www.jb51.net/article/77726.htm PHP第一次会话时会有Set-Cookie响应头返回,设置上PHPSESSID cookie Cache-Control: ...
- 如何相互转换逗号分隔的字符串和List【转】
将逗号分隔的字符串转换为List 方法 1: 利用JDK的Arrays类 String str = "a,b,c"; List<String> result = Arr ...
- JavaBean-EL-JSTL-MVC
JavaBean规范 类必须使用public修饰 必须保证有公共无参数构造器. (一般就是可以通过反射轻松的创建对象) 包含了属性的操作(给属性赋值,获取属性值). JavaBean中的成 ...
- 关于Mysql数据库的学习总结
关于Mysql操作指令: 1.键盘win + R 弹出windows运行输入框,输入cmd命令,进入windows数据库; 2.在windows数据库里输入mysql(数据库) -uroot(用户 ...
- 为archlinux终端ls不同类型文件设置不同显示颜色
title: 为archlinux终端ls不同类型文件设置不同显示颜色 date: 2017-11-13 20:53:55 tags: linux categories: linux archlinu ...