F. Auction of Services
time limit per test

2.0 s

memory limit per test

256 MB

input

standard input

output

standard output

It is becoming more common to use strategies based on social networks for shopping, contract services, arrange meetings, etc. Such strategies often involve interesting mathematical knowledge, like Game Theory. A new trend has appeared, the use of social networks to carry out virtual auctions to contract services. The service providers have agreements between them that enforce a service to cost a predetermine value. The prices a company charges, when it works in collaboration with each of its partners, can be very different, since many factors such as location, previous partnerships, tradition, etc. influence the convenience of a particular partnership.

In this problem you want to estimate the price of a service given by a couple of service providers. It is already known the price of the service given by some companies that have an agreement to work together. Furthermore, if we have two companies A and B, we can contract a service (offered by them) using a chain of companies c1, c2, ... ck, such that

  • ci and ci + 1 have an agreement, for i = 1, ..., k - 1,
  • c1 = A and ck = B.

Also, we know that the price to contract such chain of companies, is the highest price of a service given by a pair of adjacent companies in that chain. That's the power of social networks!

In the previous figure, despite the fact that the price of the agreement between A and C is 13, the best price (in the network that links these companies) is 9, using the agreements through B.

Your task is to help these virtual auctions. The person interested in contracting a certain service chooses a pair of companies he want to contract, and you need to make a program that answers the minimum possible price of that service.

Input

The first line contains two integers N and M, the number of companies and agreements, respectively. The companies are numbered from 1 to N. Each of the following M lines contains three integers, the ith contains AiBi and Ci, indicating that there is an agreement between companies Ai and Bi whose price is Ci. Each pair of companies has at most one agreement. It is guaranteed it is possible to contract a service between any pair of companies.

The next line contains an integer Q, the number of queries. The following Q lines contain a pair of integers representing the companies which we want to contract.

Limits

  • 2 ≤ N ≤ 105
  • 1 ≤ M ≤ 2·105
  • 1 ≤ Ai ≠ Bi ≤ N
  • 1 ≤ Ci ≤ 106
  • 1 ≤ Q ≤ 2·105
Output

Print Q integers representing the price of the service for each query.

Examples
input
4 4
1 2 6
1 3 1
2 4 2
3 4 2
2
1 2
1 4
output
2
2
input
4 4
1 2 1
2 3 7
2 4 3
3 4 4
4
1 3
1 4
3 2
4 2
output
4
3
4
3

题意:无向带权图,找一个点到另一个点的边权最大值最小;

思路:最小生成树:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。

    显然先构造一颗最小生成树,然后类似LCA的求法求两个点之间的最大值;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0));
struct is
{
int u,v,w;
bool operator <(const is &c)const
{
return w<c.w;
}
}a[N<<];
int faT[N];
int Find(int x)
{
return x==faT[x]?x:faT[x]=Find(faT[x]);
}
vector<pair<int,int> >edge[N];
int fa[N][],ma[N][],deep[N];
void dfs(int u,int fat)
{
for (int i=; i<= ;i++) {
if(deep[u]<(<<i)) break;
fa[u][i] = fa[fa[u][i-]][i-];
ma[u][i] = max(ma[fa[u][i-]][i-],ma[u][i-]);
}
for (int i=;i<edge[u].size();i++)
{
int v=edge[u][i].first;
int w=edge[u][i].second;
if(v==fat) continue;
deep[v]=deep[u]+;
fa[v][]=u;
ma[v][]=w;
dfs(v,u);
}
}
int RMQ_LCA(int x,int y) {
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y],ans=;
for (int i=; i<= ;i++)
if((<<i)&d) ans=max(ans,ma[x][i]),x=fa[x][i];
for (int i=; i>= ;i--) {
if(fa[x][i]!=fa[y][i]) {
ans=max(ans,ma[x][i]),ans=max(ans,ma[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if(x==y) return ans;
else return max(ans,max(ma[y][],ma[x][]));
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
faT[i]=i;
for(int i=;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+,a++m);
for(int i=;i<=m;i++)
{
int x=Find(a[i].u);
int z=Find(a[i].v);
if(x!=z)
{
edge[a[i].u].push_back(make_pair(a[i].v,a[i].w));
edge[a[i].v].push_back(make_pair(a[i].u,a[i].w));
faT[x]=z;
}
}
dfs(,);
int q;
scanf("%d",&q);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",RMQ_LCA(u,v));
}
return ;
}

gym 101081 gym F. Auction of Services 最小生成树+倍增LCA的更多相关文章

  1. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  2. 【bzoj3732】Network 最小生成树+倍增LCA

    题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...

  3. 【bzoj4242】水壶 BFS+最小生成树+倍增LCA

    题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...

  4. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  5. BFS+最小生成树+倍增+LCA【bzoj】4242 水壶

    [bzoj4242 水壶] Description JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有 ...

  6. BZOJ 3732 Network —— 最小生成树 + 倍增LCA

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 <= N <= 15, ...

  7. codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)

    官方题解: If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c ...

  8. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  9. codevs 1519 过路费 最小生成树+倍增

    /*codevs 1519 过路费 最小生成树+倍增*/ #include<iostream> #include<cstdio> #include<cstring> ...

随机推荐

  1. ng2-tree

    [转]https://github.com/valor-software/ng2-tree#eyes-demo  demo:http://valor-software.com/ng2-tree/

  2. jQuery相关用法

    #jquery中extend的用法 [1] [2] jQuery.extend( target [, object1 ] [, objectN ] ) Description: Merge the c ...

  3. windows 控制台下运行cl命令

    前提:确保已经安装vc6或者vs系列 我们可以再命令行直接编译c++程序, 在windows操作系统中,打开命令行,输入cl,若系统提示:'cl' 不是内部或外部命令,也不是可运行的程序或批处理文件. ...

  4. npm 镜像的问题

    1> cnpm(不推荐) npm install -g cnpm --registry=https://registry.npm.taobao.org 2> 推荐第二种 npm confi ...

  5. darknet集成遇到的问题以及解决方法

    将darknet集成进工程时,遇到了一些问题,下面记录一下解决方法: 集成步骤: 首先在yolo编译的时候,需要将三个开关打开: #define GPU#define CUDNN#define OPE ...

  6. C语言中tm结构体

    struct tm { int tm_sec; /* Seconds. [0-60] (1 leap second) */ int tm_min; /* Minutes. [0-59] */ int ...

  7. python练习题-day14

    一.选择题 1. python不支持的数据类型有:A. charB. intC. floatD. list ans:A 2.x = ‘foo’y = 2print(x + y) A. fooB. fo ...

  8. 初学Vue 遇到Module not found:Error:Can`t resolve 'less-loader' 问题

    学习vue时,导入一个子组件时遇到Module not found:Error:Can`t resolve 'less-loader' 问题,实际上时在子组件中的样式里加了这么个代码 <styl ...

  9. asp.net机制理解(Javaweb同理)

    1.页面运行先后顺序 先执行aspx中的代码,然后再合并到HTML中,最后一起送到浏览器执行,HTML是从上到下执行的,而HTML中的Windows.onload()最后执行.而由于aspx中的代码是 ...

  10. 《linux就该这么学》第四节课笔记,三章和四章开始!

    第三章 (根据课本和在线培训视频排版总结,借鉴请改动)         右键可打开终端练习             3.1:输入输出重定向 输入重定向:符号 "<" ,是一种 ...