1. 详解

STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\(Y_v\)分解为趋势分量(trend component)、周期分量(seasonal component)和余项(remainder component):

\[Y_v = T _v + S_v + R_v \quad v= 1, \cdots, N
\]

STL分为内循环(inner loop)与外循环(outer loop),其中内循环主要做了趋势拟合与周期分量的计算。假定\(T_v^{(k)}\)、\(S_v{(k)}\)为内循环中第k-1次pass结束时的趋势分量、周期分量,初始时\(T_v^{(k)} = 0\);并有以下参数:

  • \(n_{(i)}\)内层循环数,
  • \(n_{(o)}\)外层循环数,
  • \(n_{(p)}\)为一个周期的样本数,
  • \(n_{(s)}\)为Step 2中LOESS平滑参数,
  • \(n_{(l)}\)为Step 3中LOESS平滑参数,
  • \(n_{(t)}\)为Step 6中LOESS平滑参数。

每个周期相同位置的样本点组成一个子序列(subseries),容易知道这样的子序列共有共有\(n_(p)\)个,我们称其为cycle-subseries。内循环主要分为以下6个步骤:

  • Step 1: 去趋势(Detrending),减去上一轮结果的趋势分量,\(Y_v - T_v^{(k)}\);
  • Step 2: 周期子序列平滑(Cycle-subseries smoothing),用LOESS (\(q=n_{n(s)}\), \(d=1\))对每个子序列做回归,并向前向后各延展一个周期;平滑结果组成temporary seasonal series,记为$C_v^{(k+1)}, \quad v = -n_{(p)} + 1, \cdots, -N + n_{(p)} $;
  • Step 3: 周期子序列的低通量过滤(Low-Pass Filtering),对上一个步骤的结果序列\(C_v^{(k+1)}\)依次做长度为\(n_(p)\)、\(n_(p)\)、\(3\)的滑动平均(moving average),然后做LOESS (\(q=n_{n(l)}\), \(d=1\))回归,得到结果序列\(L_v^{(k+1)}, \quad v = 1, \cdots, N\);相当于提取周期子序列的低通量;
  • Step 4: 去除平滑周期子序列趋势(Detrending of Smoothed Cycle-subseries),\(S_v^{(k+1)} = C_v^{(k+1)} - L_v^{(k+1)}\);
  • Step 5: 去周期(Deseasonalizing),减去周期分量,\(Y_v - S_v^{(k+1)}\);
  • Step 6: 趋势平滑(Trend Smoothing),对于去除周期之后的序列做LOESS (\(q=n_{n(t)}\), \(d=1\))回归,得到趋势分量\(T_v^{(k+1)}\)。

外层循环主要用于调节robustness weight。如果数据序列中有outlier,则余项会较大。定义

\[h = 6 * median(|R_v|)
\]

对于位置为\(v\)的数据点,其robustness weight为

\[\rho_v = B(|R_v|/h)
\]

其中\(B\)函数为bisquare函数:

\[B(u) = \left \{
{
\matrix {
{(1-u^2)^2 } & {for \quad 0 \le u < 1} \cr
{ 0} & {for \quad u \ge 1} \cr
}
}
\right.
\]

然后每一次迭代的内循环中,在Step 2与Step 6中做LOESS回归时,邻域权重(neighborhood weight)需要乘以\(\rho_v\),以减少outlier对回归的影响。STL的具体流程如下:

outer loop:
计算robustness weight;
inner loop:
Step 1 去趋势;
Step 2 周期子序列平滑;
Step 3 周期子序列的低通量过滤;
Step 4 去除平滑周期子序列趋势;
Step 5 去周期;
Step 6 趋势平滑;

为了使得算法具有足够的robustness,所以设计了内循环与外循环。特别地,当\(n_{(i)}\)足够大时,内循环结束时趋势分量与周期分量已收敛;若时序数据中没有明显的outlier,可以将\(n_{(o)}\)设为0。

R提供STL函数,底层为作者Cleveland的Fortran实现。Python的statsmodels实现了一个简单版的时序分解,通过加权滑动平均提取趋势分量,然后对cycle-subseries每个时间点数据求平均组成周期分量:

def seasonal_decompose(x, model="additive", filt=None, freq=None, two_sided=True):
_pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x)
x = np.asanyarray(x).squeeze()
nobs = len(x)
...
if filt is None:
if freq % 2 == 0: # split weights at ends
filt = np.array([.5] + [1] * (freq - 1) + [.5]) / freq
else:
filt = np.repeat(1./freq, freq) nsides = int(two_sided) + 1
# Linear filtering via convolution. Centered and backward displaced moving weighted average.
trend = convolution_filter(x, filt, nsides)
if model.startswith('m'):
detrended = x / trend
else:
detrended = x - trend period_averages = seasonal_mean(detrended, freq) if model.startswith('m'):
period_averages /= np.mean(period_averages)
else:
period_averages -= np.mean(period_averages) seasonal = np.tile(period_averages, nobs // freq + 1)[:nobs] if model.startswith('m'):
resid = x / seasonal / trend
else:
resid = detrended - seasonal results = lmap(_pandas_wrapper, [seasonal, trend, resid, x])
return DecomposeResult(seasonal=results[0], trend=results[1],
resid=results[2], observed=results[3])

R版STL分解带噪音点数据的结果如下图:

data = read.csv("artificialWithAnomaly/art_daily_flatmiddle.csv")
View(data)
data_decomp <- stl(ts(data[[2]], frequency = 1440/5), s.window = "periodic", robust = TRUE)
plot(data_decomp)

statsmodels模块的时序分解的结果如下图:

import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
from date_utils import get_gran, format_timestamp dta = pd.read_csv('artificialWithAnomaly/art_daily_flatmiddle.csv',
usecols=['timestamp', 'value'])
dta = format_timestamp(dta)
dta = dta.set_index('timestamp')
dta['value'] = dta['value'].apply(pd.to_numeric, errors='ignore')
dta.value.interpolate(inplace=True)
res = sm.tsa.seasonal_decompose(dta.value, freq=288)
res.plot()
plt.show()

2. 参考资料

[1] Cleveland, Robert B., William S. Cleveland, and Irma Terpenning. "STL: A seasonal-trend decomposition procedure based on loess." Journal of Official Statistics 6.1 (1990): 3.

时间序列分解算法:STL的更多相关文章

  1. 时间序列分解-STL分解法

    时间序列分解-STL分解法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. STL(’Seasonal a ...

  2. R语言-时间序列

    时间序列:可以用来预测未来的参数, 1.生成时间序列对象 sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20, 22, 31, 40 ...

  3. 从时序异常检测(Time series anomaly detection algorithm)算法原理讨论到时序异常检测应用的思考

    1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关 ...

  4. 亿级用户百TB级数据的AIOps 技术实践之路

    关于面临的挑战 "因为专业性强,我认为反而让交互方式变简单了,打个点餐的比方,软件1.0阶段是,我要吃鱼香肉丝,我要吃辣的或是素一点的,根据清晰的接口上菜.而软件2.0阶段就是,我今天想吃开 ...

  5. 时序分解算法:STL

    1. 详解 STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,将某时刻的数据\(Y_v\)分解 ...

  6. 网络KPI异常检测之时序分解算法

    时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识, ...

  7. 用R分析时间序列(time series)数据

    时间序列(time series)是一系列有序的数据.通常是等时间间隔的采样数据.如果不是等间隔,则一般会标注每个数据点的时间刻度. time series data mining 主要包括decom ...

  8. 时间序列异常检测算法S-H-ESD

    1. 基于统计的异常检测 Grubbs' Test Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集(univariate data set)\(Y\) 中的单个异 ...

  9. 【R语言学习】时间序列

    时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() st ...

随机推荐

  1. HDU-2177 取(2堆)石子游戏 (威佐夫博奕)

    Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...

  2. PHP.ini 文件大小限制

    post_max_size=80000000000M upload_max_filesize=2000000000M

  3. new关键字对构造函数做了什么

    new 命令 基本用法 new 命令的作用,就是执行构造函数,返回一个实例对象. 1 var Vehicle = function (){ 2 this.price = 1000; 3 }; 4 5 ...

  4. 搭建 LAMP 环境

    1,搭建 MySQL 数据库 .安装 MySQL 使用 yum 安装 MySQL: yum install mysql-server -y 安装完成后,启动 MySQL 服务: service mys ...

  5. [CF1039D]You Are Given a Tree

    [CF1039D]You Are Given a Tree 题目大意: 给定一棵\(n(n\le10^5)\)个节点的树.对于每一个正整数\(k(1\le k\le n)\),求最多能找出多少条包含\ ...

  6. JS将日期转为距现在的时间长度

    最近在弄一个回忆网站,其中有个一板块类似于情侣空间的纪念日. 照着弄了个类似的,效果如下: 在处理过程中需要把时间戳转为Date()对象,然后与本地时间相减获得时间差,通过运算转换成对应的年月日时长, ...

  7. iframe边距问题解决

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Flask 三方组件 WTForms

    WTForms是一个支持多个web框架的form组件,主要用于对用户请求数据进行验证 from flask import Blueprint from flask import request fro ...

  9. c c++ 函数不要返回局部变量的指针

    结论:普通的变量(非new的变量)都是系统自动分配的,在栈空间(连续分配),无需程序员操作,速度快,但是...空间有限,不适合大量数据,大量的话就需要自己new new出来的变量是处于大容量的堆空间, ...

  10. python3.5环境配置

    前言: python3应该是python的趋势所在,当然目前争议也比较大,这篇随笔的主要目的是记录在linux6.4下搭建python3环境的过程 以及碰到的问题和解决过程. 另外,如果本机安装了py ...