转载地址:https://www.byvoid.com/blog/scc-tarjan

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

Low(u)=Min
{
DFN(u),
Low(v),(u,v)为树枝边,u为v的父节点
DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)
}

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是 O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。 在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序

void tarjan(int i)
{
int j;
DFN[i]=LOW[i]=++Dindex;
instack[i]=true;
Stap[++Stop]=i;
for (edge *e=V[i];e;e=e->next)
{
j=e->t;
if (!DFN[j])
{
tarjan(j);
if (LOW[j]<LOW[i])
LOW[i]=LOW[j];
}
else if (instack[j] && DFN[j]<LOW[i])
LOW[i]=DFN[j];
}
if (DFN[i]==LOW[i])
{
Bcnt++;
do
{
j=Stap[Stop--];
instack[j]=false;
Belong[j]=Bcnt;
}
while (j!=i);
}
}
void solve()
{
int i;
Stop=Bcnt=Dindex=0;
memset(DFN,0,sizeof(DFN));
for (i=1;i<=N;i++)
if (!DFN[i])
tarjan(i);
}

[参考资料]

BYVoid 原创作品,转载请注明。

【转载】有向图强连通分量的Tarjan算法的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  5. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  6. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  7. Java实现有向图强连通分量的Tarjan算法

    1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为 ...

  8. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  9. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. 红外图像处理之直方图均衡的matlab源码与效果验证

    红外图像是热辐射成像,由于场景中的目标与背景的温差相对较小,红外图像的动态范围大.对比度 低, 信噪比也较可见光图像的低.为了能够从红外图像中正确地识别出目标,必须对红外图像进行增强处理.一般红外探测 ...

  2. vmware 安装配置 ,记住这一次不要再问我了。ok?

    Linux 安装配置 ,记住这一次不要再问我了.ok? 第一步 选择版本 如果遇到问题无法自动获取的  老男孩教育-李泳谊<youjiu_linux@qq.com> 17:51:43明天开 ...

  3. python3 - 使用__slots__限制实例属性

    为了限制实例的属性,可以在定义class的时候,定义一个特殊的__slots__变量,来限制class实例能添加的属性.比如,只允许对Persion实例添加name 和 age 属性 class Pe ...

  4. Yii 2 的安装 之 踩坑历程

    由于刚接触yii2 ,决定先装个试试:可是这一路安装差点整吐血,可能还是水平有限吧,  但还是想把这个过程分享出来,让遇到同样问题的同学有个小小的参考,好了言归正传!! <(~.~)> 下 ...

  5. jqgrid 事件说明

    Events(事件) 事件响应动作被设置为表格的属性,以下定义了行被选中时的响应: var lastSel; jQuery("#gridid").jqGrid({ ...    o ...

  6. python学习【第四篇】python函数 (一)

    一.函数的介绍 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可以 ...

  7. 安装mysql报错—解决方法:error while loading shared libraries: libssl.so.6

    for 32bit ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so.6ln -sf /usr/lib/libcrypto.so.10 /usr/lib/ ...

  8. 禁止向 HTML 页面输出未经安全过滤或未正确转义的用户数据。

    https://github.com/alibaba/p3c/blob/master/阿里巴巴Java开发手册(详尽版).pdf 5. [强制]禁止向 HTML 页面输出未经安全过滤或未正确转义的用户 ...

  9. Centos简介(一)

    Centos作为主流的一种Linux操作系统,我们选用Centos,主要是免费,以及稳定. Centos详细介绍,请参考 百度百科

  10. D3D9和OpenGL加载纹理图片的API是哪个?

    D3D9 创建一个空纹理,当返回 S_OK 且 ppTexture 纹理对象指针不为 NULL 时,则表示该函数调用成功. HRESULT D3DXCreateTexture( _In_  LPDIR ...