本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3 正解:树链剖分
解题报告:
  链剖裸题,注意清空数组。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
#define lc root<<1
#define rc root<<1|1
typedef long long LL;
const int MAXN = 20011;
const int MAXM = 40011;
const int inf = (1<<30);
int n,ecnt,first[MAXN],to[MAXM],next[MAXM],w[MAXM],father[MAXN],quan[MAXN],quanv[MAXN];
int deep[MAXN],id[MAXN],pre[MAXN],son[MAXN],size[MAXN],top[MAXN],match[MAXN],ans,ql,qr,CC;
char ch[12];
struct node{ int maxl; }a[MAXN*3];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
size[x]=1;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
father[v]=x; deep[v]=deep[x]+1; quanv[v]=(i+1)>>1;
quan[v]=w[i]; match[(i+1)>>1]=v;
dfs(v,x); size[x]+=size[v];
if(size[v]>=size[son[x]]) son[x]=v;
}
} inline void dfs2(int x,int fa){
id[x]=++ecnt; pre[ecnt]=x;
if(son[x]) top[son[x]]=top[x],dfs2(son[x],x);
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa || v==son[x]) continue;
top[v]=v; dfs2(v,x);
}
} inline void build(int root,int l,int r){
if(l==r) { a[root].maxl=quan[pre[l]]; return ; }
int mid=(l+r)>>1; build(lc,l,mid); build(rc,mid+1,r);
a[root].maxl=max(a[lc].maxl,a[rc].maxl);
} inline void query(int root,int l,int r){
if(ql<=l && r<=qr) { ans=max(ans,a[root].maxl); return ; }
int mid=(l+r)>>1; if(ql<=mid) query(lc,l,mid); if(qr>mid) query(rc,mid+1,r);
} inline void lca(int x,int y){
ans=-inf; int f1=top[x],f2=top[y];
while(f1!=f2) {
if(deep[f1]<deep[f2]) swap(f1,f2),swap(x,y);
ql=id[f1]; qr=id[x]; query(1,1,n);
x=father[f1]; f1=top[x];
}
if(deep[x]<deep[y]) swap(x,y);
ql=id[son[y]]; qr=id[x];
if(ql<=qr) query(1,1,n);
printf("%d\n",ans);
} inline void update(int root,int l,int r){
if(l==r) { a[root].maxl=CC; return ; }
int mid=(l+r)>>1;
if(ql<=mid) update(lc,l,mid); else update(rc,mid+1,r);
a[root].maxl=max(a[lc].maxl,a[rc].maxl);
} inline void work(){
int T=getint(); int x,y,z;
while(T--) {
n=getint(); ecnt=0; memset(first,0,sizeof(first));
memset(son,0,sizeof(son));
for(int i=1;i<n;i++) {
x=getint(); y=getint(); z=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z;
}
deep[1]=1; dfs(1,0);
ecnt=0; top[1]=1; dfs2(1,0);
build(1,1,n);
while(1) {
scanf("%s",ch); if(ch[0]=='D') break;
if(ch[0]=='Q') {
x=getint(); y=getint();
lca(x,y);
}
else {
x=getint(); y=getint(); CC=y;
z=match[x];//边对应的连接的儿子节点
quan[z]=y; ql=id[z]; update(1,1,n);
}
}
}
} int main()
{
work();
return 0;
}

  

SPOJ375 QTREE - Query on a tree的更多相关文章

  1. [SPOJ375]QTREE - Query on a tree【树链剖分】

    题目描述 给你一棵树,两种操作. 修改边权,查找边权的最大值. 分析 我们都知道,树链剖分能够维护点权. 而且每一条边只有一个,且唯一对应一个儿子节点,那么就把信息放到这个儿子节点上. 注意,lca的 ...

  2. QTREE - Query on a tree

    QTREE - Query on a tree 题目链接:http://www.spoj.com/problems/QTREE/ 参考博客:http://blog.sina.com.cn/s/blog ...

  3. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  4. SP375 QTREE - Query on a tree (树剖)

    题目 SP375 QTREE - Query on a tree 解析 也就是个蓝题,因为比较长 树剖裸题(基本上),单点修改,链上查询. 顺便来说一下链上操作时如何将边上的操作转化为点上的操作: 可 ...

  5. SPOJ VJudge QTREE - Query on a tree

    Query on a tree Time Limit: 851MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submi ...

  6. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  7. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  8. SP375 QTREE - Query on a tree

    题意大意 给定\(n\)个点的树,边按输入顺序编号为\(1,2,...n-1\),要求作以下操作: CHANGE \(i\) \(t_i\) 将第\(i\)条边权值改为\(t_i\),QUERY \( ...

  9. SPOJ QTREE Query on a tree VI

    You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...

随机推荐

  1. L - Sum It Up(DFS)

    L - Sum It Up Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Descr ...

  2. Sql注入基础_access注入

    1.access注入攻击片段-联合查询 2.access注入攻击片段-逐字猜解法 3.Access偏移注入(表名和列名猜解成功率不是百分百,猜解不到) access注入攻击片段-联合查询法 判断注入 ...

  3. 取得当前页面的value值问题

    取得当前输入input的值 <body>    <form action="">        <input type="text" ...

  4. C#处理MySql多个返回集

    关于Mysql返回多个集java和Php的较多,但是C#的完整代码好像没见过,研究了一下做个封装以后用 做一个Mysql的简单分页查询,有两个返回集 Sql语句如下 SELECT COUNT(*) f ...

  5. $(document).ready() $(window).load 及js的window.onload

    1.$(document).ready()  简写为$(function(){}) DOM结构绘制完成执行,而无需等到图片或其他媒体下载完毕. 2.$(window).load  在有时候确实我们有需 ...

  6. 交叉熵(Cross-Entropy) [转载]

    交叉熵(Cross-Entropy) 交叉熵是一个在ML领域经常会被提到的名词.在这篇文章里将对这个概念进行详细的分析. 1.什么是信息量? 假设X是一个离散型随机变量,其取值集合为X,概率分布函数为 ...

  7. [转载]威力导演14旗舰破解版(中文简体)|取消30天限制CyberLink&nb

               2015月9月15日(当地时间),CyberLink讯连科技发布新一代视频编辑软件 — PowerDirector威力导演14,融合了上个版本发布以来的多次更新升级,威力导演依旧 ...

  8. C# 函数3

    //获取部分     public class GF_GET     {         /// <summary>         /// 根据坐标点获取屏幕图像         /// ...

  9. SAN,NAS区别的联系

    在网络存储中,有着各种网络存储解决方案,例如:SAN,NAS,DAS存储网络,它们各自有着各自的特点,其运用场景也有所不同.下面就说说各自的特点. 一.SAN SAN(Storage Area Net ...

  10. SpringMVC:学习笔记(3)——REST

    SpringMVC:学习笔记(3)——REST 了解REST风格 按照传统的开发方式,我们在实现CURD操作时,会写多个映射路径,比如对一本书的操作,我们会写多个URL,可能如下 web/delete ...