【bzoj2561】最小生成树
嗯……这题是一个网络流。
加入的边为u,v长度L
则所有长度大于L的边不能使得u,v连通
求个最小割即可。小于同理
两次最小割结果相加。
#include<bits/stdc++.h>
#define N 200005
#define M 1000005
#define inf 1000000007
using namespace std;
int tu,tv,tval,n,m,cnt,ans,tot=,head[N],s,t;
struct Edge1{int u,v,w;}T[N];
struct Edge2{int u,v,f,next;}G[M];
inline void addedge(int u,int v,int f){
G[tot].u=u;G[tot].v=v;G[tot].f=f;G[tot].next=head[u];head[u]=tot++;
G[tot].u=v;G[tot].v=u;G[tot].f=f;G[tot].next=head[v];head[v]=tot++;
}
inline bool operator<(Edge1 a,Edge1 b){return a.w<b.w;}
int level[N];
bool bfs(int s,int t){
memset(level,,sizeof(level));queue<int>q;
q.push(s);level[s]=;
while(!q.empty()){
int u=q.front();q.pop();
if(u==t)return ;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&!level[v])level[v]=level[u]+,q.push(v);
}
}
return ;
}
int dfs(int u,int maxf,int t){
if(u==t)return maxf;int rat=;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&level[v]==level[u]+){
f=dfs(v,min(maxf-rat,f),t);
rat+=f;G[i].f-=f;G[i^].f+=f;
}
}
if(!rat)level[u]=inf;
return rat;
}
inline int dinic(int s,int t){
int ans=;
while(bfs(s,t))ans+=dfs(s,inf,t);
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
memset(head,-,sizeof(head));tot=;
n=read();m=read();
for(int i=;i<=m;i++)T[i].u=read(),T[i].v=read(),T[i].w=read();
tu=read();tv=read();tval=read();
sort(T+,T+m+);
for(int i=;i<=m;i++)
if(T[i].w<tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
memset(head,-,sizeof(head));tot=;
for(int i=m;i;i--)if(T[i].w>tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
printf("%d\n",ans);
}
【bzoj2561】最小生成树的更多相关文章
- bzoj2561最小生成树
bzoj2561最小生成树 题意: 给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上. 题解: 最 ...
- BZOJ2561 最小生成树(最小割)
考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...
- [bzoj2561]最小生成树_网络流_最小割_最小生成树
最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...
- bzoj2561: 最小生成树
如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv.据此跑最小割(最大流)即可. #include<cstdio> #include<cstring> #includ ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- bzoj千题计划322:bzoj2561: 最小生成树(最小割)
https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...
- BZOJ2561 最小生成树 【最小割】
题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- 【bzoj2561】最小生成树 网络流最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
随机推荐
- 在阿里云上遇见更好的Oracle(四)
2016.5.13,北京,第七届数据库技术大会. 从最初的itpub社区,到后来被it168收购,DBA社区的线下聚会发展成2010年第一届数据库技术大会(DTCC).第一届大会汇聚了社区内活跃的各位 ...
- kill命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/wangcp-2014/p/5146343.html 1.命令格式: kill[参数][进程号] 2.命令功能: 发送指 ...
- BZOJ 4592 SHOI2015 脑洞治疗仪 线段树
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4592 题意概述:需要维护一个01序列A,一开始A全部都是1.支持如下操作: 1.将区间[l ...
- lintcode-123-单词搜索
123-单词搜索 给出一个二维的字母板和一个单词,寻找字母板网格中是否存在这个单词. 单词可以由按顺序的相邻单元的字母组成,其中相邻单元指的是水平或者垂直方向相邻.每个单元中的字母最多只能使用一次. ...
- JMS实战——ActiveMQ实现Pub-Sub
前言 上篇博客<JMS实战--ActiveMQ>介绍了ActiveMQ的安装,并实现了简单的PTP模型.这篇博客我们来看一下Pub-Sub模型,之后来总结一下JMS. 实现 项目结构 其中 ...
- RunKit & NPM
RunKit + NPM Try any Node.js package right in your browser https://npm.runkit.com/segmentit
- [SDOI2016] 排列计数 (组合数学)
[SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...
- POJ2516:Minimum Cost(最小费用最大流)
Minimum Cost Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 19088 Accepted: 6740 题目链 ...
- python监控服务器
import paramikoimport threadingimport reimport timeimport stringfrom sendmail import send_maildef ss ...
- 设备VMnet0上的网络桥接当前未在运行解决办法
问题: 今天把自己的VM从C盘挪到了D盘,然后再open所有VM都会显示网卡无法桥接了 “vmware 没有未桥接的主机网络适配器” 解决办法: 1.关闭所有VM 2.打开 编辑-虚拟网络编辑器,会发 ...