嗯……这题是一个网络流。

加入的边为u,v长度L

则所有长度大于L的边不能使得u,v连通

求个最小割即可。小于同理

两次最小割结果相加。

#include<bits/stdc++.h>
#define N 200005
#define M 1000005
#define inf 1000000007
using namespace std;
int tu,tv,tval,n,m,cnt,ans,tot=,head[N],s,t;
struct Edge1{int u,v,w;}T[N];
struct Edge2{int u,v,f,next;}G[M];
inline void addedge(int u,int v,int f){
G[tot].u=u;G[tot].v=v;G[tot].f=f;G[tot].next=head[u];head[u]=tot++;
G[tot].u=v;G[tot].v=u;G[tot].f=f;G[tot].next=head[v];head[v]=tot++;
}
inline bool operator<(Edge1 a,Edge1 b){return a.w<b.w;}
int level[N];
bool bfs(int s,int t){
memset(level,,sizeof(level));queue<int>q;
q.push(s);level[s]=;
while(!q.empty()){
int u=q.front();q.pop();
if(u==t)return ;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&!level[v])level[v]=level[u]+,q.push(v);
}
}
return ;
}
int dfs(int u,int maxf,int t){
if(u==t)return maxf;int rat=;
for(int i=head[u];~i;i=G[i].next){
int v=G[i].v,f=G[i].f;
if(f&&level[v]==level[u]+){
f=dfs(v,min(maxf-rat,f),t);
rat+=f;G[i].f-=f;G[i^].f+=f;
}
}
if(!rat)level[u]=inf;
return rat;
}
inline int dinic(int s,int t){
int ans=;
while(bfs(s,t))ans+=dfs(s,inf,t);
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
memset(head,-,sizeof(head));tot=;
n=read();m=read();
for(int i=;i<=m;i++)T[i].u=read(),T[i].v=read(),T[i].w=read();
tu=read();tv=read();tval=read();
sort(T+,T+m+);
for(int i=;i<=m;i++)
if(T[i].w<tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
memset(head,-,sizeof(head));tot=;
for(int i=m;i;i--)if(T[i].w>tval)addedge(T[i].u,T[i].v,);else break;
ans+=dinic(tu,tv);
printf("%d\n",ans);
}

【bzoj2561】最小生成树的更多相关文章

  1. bzoj2561最小生成树

    bzoj2561最小生成树 题意: 给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上. 题解: 最 ...

  2. BZOJ2561 最小生成树(最小割)

    考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...

  3. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  4. bzoj2561: 最小生成树

    如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv.据此跑最小割(最大流)即可. #include<cstdio> #include<cstring> #includ ...

  5. BZOJ2561最小生成树——最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  6. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  7. BZOJ2561 最小生成树 【最小割】

    题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...

  8. 【BZOJ2561】最小生成树 最小割

    [BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...

  9. 【bzoj2561】最小生成树 网络流最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

随机推荐

  1. abs项目 - 战线拉的太长

    abs项目 - 战线拉的太长 “从项目中来,到项目中去”. 坑是踩不完的,尽量做到不要踩重复的坑就好. 最近的这个项目,从2016的8月份左右开始立项,一直做到2017的2月份,还是有很多的问题在继续 ...

  2. 时间动态协同过滤(TimeSVD++)

    原作者 原论文地址 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.379.1951&rep=rep1&type=pd ...

  3. Spring Cloud 自定义ConfigServer 解决敏感信息存储问题

    公司需要将系统配置信息中的敏感信息独立存放. 现有系统采用Spring Cloud Config提供配置信息,其中敏感信息主要是Db配置,分解本次需求: (1)数据库配置信息分离(主要是Db信息). ...

  4. POJ 1703 Find them, Catch them(并查集拓展)

    Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...

  5. [译]在SQL查询中如何映射(替换)查询的结果?

    问题来源: https://stackoverflow.com/questions/38567366/mapping-values-in-sql-select 有一个表格,就称它Plant,它有三列: ...

  6. truffle开发一个简单的Dapp

    1.安装Truffle:npm install -g truffle 2.建立项目目录并进入:mkdir pet-shop-tutorial cd pet-shop-tutorial 3.使用truf ...

  7. 权限管理UML设计草图

    PS:  最近闲来无事,打算整一个权限管理模块.然而UML我只会看不会设计,现在的草图都是边学边做的,现在发出来,希望前辈们指点一二!先拜谢了! 搞开发也有2年多快三年了,我感觉自己基本上还是一个菜鸟 ...

  8. 阿里云服务器 linux下载 jdk

    直接从本地下载包上传比较慢.直接在服务器上下载安装包: 1.进入orcle官网; 2.选择需要下载的版本,下载需要同意orcle协议, 3.点击下载,获取到下载请求的cookie, 复制所有cooki ...

  9. HTML文档插入JS代码的几种方法

    在HTML文档里嵌入客户端JavaScript代码有4中方法: 1.内联,放置在< script>和标签对之间. 2.放置在由< script>标签的src属性指定的外部文件中 ...

  10. 【COGS 1534】 [NEERC 2004]K小数 &&【COGS 930】 [河南省队2012] 找第k小的数 可持久化01Trie

    板子题,只是记得负数加fix最方便 #include <cstdio> ,N=; namespace FIFO { <<],*S=B,*T=B; #define getc() ...