mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们可以推出f(x)=Σmiu(d)*F(d/x) x|d,第二种形式可以由容斥定理得出,在此不再赘述。

  我们由一个例子来了解mobius反演的作用。

  求解ans=Σ(0<i<=n)Σ(0<j<=m)1(gcd(i,j)=1)即n,m范围中互质点对儿数。

  我们设 F(x)为gcd(i,j)|x的点对儿数量,f(x)为gcd(i,j)=x的点对儿数量。那么易得F(x)=Σf(d) x|d,那么由第二形式可得f(x)=Σmiu(d)*F(d/x) x|d,那么这道题就是求f(1),即f(1)=Σmiu(d)*F(d) d<=min(n,m),比较显然的是F(x)=floor(n/d)*floor(m/d)。那么我们可以得到答案的形式

  ans=Σmiu(i)*floor(n/i)*floor(m/i)。可以O(n)的求解。

  但是对于某些问题,O(n)是无法在规定时间内完成的,我们考虑w=floor(n/i)*floor(m/i),对于i递增,w为不减的,即存在连续段w值相同。那么我们可以求出mobius函数的前缀和,然后分块的来求解,我们找到w值相同的区间,即存在j,满足floor(n/j)=floor(n/i),floor(m/j)=floor(m/i),那么j=min(floor(n/floor(n/i)),floor(m/floor(m/i))),这样对于w相同的块儿一起处理就行了,这样时间复杂度就变成了O(sqrt(n))。

  基础题bzoj 2301 http://61.187.179.132/JudgeOnline/problem.php?id=2301

这道题就是多了一个容斥定理求解,基本的思路和上面的相同,可以作为练手题。

/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
var
a, b, c, d, k, t :longint;
ans :int64;
i :longint;
prime, miu, mindiv :array[..] of longint;
sum :array[..] of int64; procedure make;
var
i, j :longint;
begin
miu[]:=;
for i:= to do
begin
if mindiv[i]= then
begin
inc(prime[]);
prime[prime[]]:=i;
mindiv[i]:=i;
miu[i]:=-;
end;
for j:= to prime[] do
begin
if i*prime[j]> then break;
mindiv[i*prime[j]]:=prime[j];
if i mod prime[j]= then
begin
miu[i*prime[j]]:=;
break;
end else
miu[i*prime[j]]:=-miu[i];
end;
end;
for i:= to do sum[i]:=sum[i-]+miu[i];
end; function calc(n,m:longint):longint;
var
t, t1, t2 :int64;
i :longint;
xx :int64;
begin
calc:=;
i:=;
if n>m then xx:=m else xx:=n;
while i<=xx do
begin
t1:=n div (n div i);
t2:=m div (m div i);
if t1<t2 then t:=t1 else t:=t2;
calc:=calc+(sum[t]-sum[i-])*(n div i)*(m div i);
i:=t+;
end;
end; begin
make;
readln(t);
for i:= to t do
begin
readln(a,b,c,d,k);
ans:=int64(calc(b div k,d div k))
-int64(calc((c-) div k,b div k))
-int64(calc((a-) div k,d div k))
+int64(calc((a-) div k,(c-) div k));
writeln(ans);
end;
end.

mobius反演讲解的更多相关文章

  1. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  2. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  3. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  4. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  5. Mobius 反演与杜教筛

    积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...

  6. Mobius反演学习

    这篇文章参考了许多资料和自己的理解. 先放理论基础. 最大公约数:小学学过,这里只提一些重要的公式: $·$若$a=b$,则$\gcd(a,b)=a=b$: $·$若$\gcd(a,b)=d$,则$\ ...

  7. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  8. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  9. (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)

    莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...

随机推荐

  1. 【个人训练】(ZOJ3983)Crusaders Quest

    题意分析 和祖玛类似的那种玩法.不过是限定了九个字符,问最好情况下有几次三连碰. 暴力穷举即可.具体的做法是,先把所有"成块"的字符记录下来,然后一个一个删,再继续这样子递归做下去 ...

  2. Spring实战第八章学习笔记————使用Spring Web Flow

    Spring实战第八章学习笔记----使用Spring Web Flow Spring Web Flow是一个Web框架,它适用于元素按规定流程运行的程序. 其实我们可以使用任何WEB框架写流程化的应 ...

  3. 数据挖掘算法:k-means算法的C++实现

    (期末考试要到了,所以比较粗糙,请各位读者理解..) 一.    概念 k-means是基于原型的.划分的聚类技术.它试图发现用户指定个数(K)的簇(由质心代表).K-means算法接受输入量K,然后 ...

  4. K-Means和FCM聚类

    K均值聚类是基于原型的.划分的聚类方法.聚类数K由用户指定,初始的K个聚类中心随机选取,然后将每个点分派到最近的聚类中心,形成K个簇,接下来重新计算每个簇的聚类中心,重复上一步,直到簇不发生变化或达到 ...

  5. git 创建分支并提交到服务器对应的新分支

    1.切换到源分支 git checkout test 2.在源分支的基础上创建新分支 git branch test1 3.提交到远程分支 git pull 会自动提示下面的命令 git pull - ...

  6. c# 对List<T> 某字段排序,取TOP条数据

    //排序的对象里的字段数据准备 try { cmr.v4 = Double.Parse(cmr.v3) - Double.Parse(cmr.v2); } catch (Exception e) { ...

  7. 官方文档 恢复备份指南八 RMAN Backup Concepts

    本章内容 Consistent and Inconsistent RMAN Backups Online Backups and Backup Mode Backup Sets Image Copie ...

  8. C++-STL:vector用法总结

    目录 简介 用法 1. 头文件 2. vector的声明及初始化 3. vector基本操作 简介 vector,是同一类型的对象的集合,这一集合可看作可变大小的数组,是顺序容器的一种.相比于数组,应 ...

  9. ui-grid表格怎么实现内容居中

    这次是思想落后了,只关注怎么使用原生的ui-grid样式来实现这一需求,后来发现可以通过此列的cellTemplate来为列指定内容,从而可以使用css调整样式. ps:其实有时候换种思路,豁然开朗. ...

  10. sql in()批量操作

    //批量修改 update 表A   set A.name='n'  where   A.id    in(字符串); //批量删除 delete  from    表名称 where  列名称   ...