小Z的房间

Time Limit: 10 Sec  Memory Limit: 256 MB
[Submit][Status][Discuss]

Description

  你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。
  你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

Input

  第一行两个数分别表示n和m。
  接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。

Output

  一行一个整数,表示合法的方案数 Mod 10^9

Sample Input

  3 3
  ...
  ...
  .*.

Sample Output

  15

HINT

  n,m<=9

Main idea

  给定n*m的矩形,由0和1构成,每个相邻的0点可连边,询问有几种连边方案使得0点两两相通且路径唯一。

Solution

  显然想到了题目要求求的就是生成树计数。我们运用Matrix-Tree定理,求出根据Matrix-Tree定理得到的行列式的值即可。关于行列式有如下三条性质,根据②③两条性质,类似高斯消元一样处理就可以得到行列式的值,该值即为最终答案。
  PS(重点):

  (1) Matrix-Tree定理:Kirchhoff矩阵去掉任意一行和任意一列得到的行列式的值=生成树计数,其中Kirchhoff矩阵=“度数矩阵”-“邻接矩阵”。(为了方便处理,通常去掉Kirchhoff矩阵的第n行与第n列)
  (2) 行列式的性质:
  ① 行列式的值等于只有对角线不为0时对角线的乘积;
  ② 交换行列式的其中任意两行之后(行列式的值)*-1;
  ③ 用行列式的一行减去[另一行*(一个系数)],行列式的值不变。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=;
const int MOD=1e9; int n,m;
char ch[ONE];
long long a[ONE][ONE];
int Bian[ONE][ONE],tot;
int dx[]={,,,-};
int dy[]={,,-,}; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} long long HLS_value(int n)
{
int PD=;
long long Ans=; for(int Now=;Now<=n;Now++)
{
for(int i=Now+;i<=n;i++)
{
long long A=a[Now][Now],B=a[i][Now];
while(B!=)
{
long long t=A/B;
for(int j=Now;j<=n;j++) a[Now][j]=(long long)(a[Now][j]-(long long)t*a[i][j]%MOD+MOD) % MOD;
for(int j=Now;j<=n;j++) swap(a[Now][j],a[i][j]);
A%=B; swap(A,B); PD=-PD;
}
} if(!a[Now][Now]) return ;
Ans=Ans*a[Now][Now]%MOD;
}
return (PD*Ans+MOD) % MOD;
} int main()
{
n=get(); m=get();
for(int i=;i<=n;i++)
{
scanf("%s",ch+);
for(int j=;j<=m;j++)
if(ch[j]=='.') Bian[i][j]=++tot;
} for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(Bian[i][j])
{
for(int k=;k<=;k++)
{
int x=i+dx[k],y=j+dy[k],u=Bian[i][j],v=Bian[x][y];
if(!v) continue;
if(x< || x>n || y< || y>m)continue;
a[v][v]=(a[v][v]+) % MOD;
a[u][v]=(a[u][v]-+MOD) % MOD;
}
}
printf("%lld",HLS_value(tot-)); }

【BZOJ4031】【HEOI2015】小Z的房间 [Matrix-Tree][行列式]的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. BZOJ 4031: [HEOI2015]小Z的房间(Matrix Tree)

    传送门 解题思路 矩阵树定理模板题.矩阵树定理是求图中最小生成树个数,做法是首先求出基尔霍夫矩阵,就是度数矩阵\(-\)邻接矩阵.然后再求出这个矩阵的行列式,行列式的求法就是任意去掉一行一列,然后高斯 ...

  3. bzoj4031 [HEOI2015]小Z的房间

    Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. ...

  4. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  5. bzoj4031 [HEOI2015]小Z的房间——矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4031 矩阵树定理的模板题(第一次的矩阵树定理~): 有点细节,放在注释里了. 代码如下: # ...

  6. 【bzoj4031】[HEOI2015]小Z的房间 解题报告

    [bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含\(n*m\)个格子的格状矩形,每个格子是一个房 ...

  7. 【bzoj4031】[HEOI2015]小Z的房间 Matrix-Tree定理+高斯消元

    [bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的 ...

  8. 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)

    来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...

  9. bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 98  Solved: 29[Submit][Status] ...

  10. [HEOI2015]小Z的房间 && [CQOI2018]社交网络

    今天看了一下矩阵树定理,然后学了一下\(O(n ^ 3)\)的方法求行列式. 哦对了,所有的证明我都没看-- 这位大佬讲的好呀: [学习笔记]高斯消元.行列式.Matrix-Tree 矩阵树定理 关于 ...

随机推荐

  1. java实现单个或多个文件的压缩、解压缩 支持zip、rar等格式

    代码如下: package com.cn.util; import java.io.BufferedInputStream; import java.io.File; import java.io.F ...

  2. Fiddler 4 实现手机App的抓包

    Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获各种智能手机发出的HTTP/HTTPS请求. Fiddler能捕获IOS设备发出的请求,比如IPhone, IPad, MacBook ...

  3. LeetCode 33——搜索旋转排序数组

    1. 题目 2. 解答 2.1. 方法一 直接进行二分查找,在判断查找方向的时候详细分类. 当 nums[mid] < target 时, 若 nums[left] <= nums[mid ...

  4. 常见 SQL语句使用 增删改查

    一.常见的增删改查(一).查:1.SELECT 列名称 FROM 表名称,其中列名可以是多个,中间用豆号分开,如SELECT LastName,FirstName FROM Persons: 2.SE ...

  5. UITableView性能优化【本文摘自智车芯官网】

    UITableView是个表格视图,可以在表格行空间中添加多个子控件,UITableView继承了UIScrollView,默认状态下可以堆单元格进行滚动,所有的UITableViewControll ...

  6. weak_ptr打破环状引用

    转自:http://blog.csdn.net/malong777/article/details/48974559 weak_ptr是一种不控制对象生存周期的智能指针,它指向一个shared_ptr ...

  7. lintcode-114-不同的路径

    114-不同的路径 有一个机器人的位于一个 m × n 个网格左上角. 机器人每一时刻只能向下或者向右移动一步.机器人试图达到网格的右下角. 问有多少条不同的路径? 注意事项 n和m均不超过100 样 ...

  8. lintcode-76-最长上升子序列

    76-最长上升子序列 给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度. 说明 最长上升子序列的定义: 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列 ...

  9. IE图片下载

    之前要用到图面下载功能,玩上找了好多,方法基本都是直接window.open(src),这样是直接在新打开的窗口中打开图片,并不是下载.考虑到IE的兼容性问题太难找了,好不容易找到一个能用的,所以保存 ...

  10. PAT 甲级 1015 Reversible Primes

    https://pintia.cn/problem-sets/994805342720868352/problems/994805495863296000 A reversible prime in ...