w

https://en.wikipedia.org/wiki/Ramsey's_theorem

https://zh.wikipedia.org/wiki/拉姆齐定理

组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有 k 个人相识或 l 个人互不相识。

这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。

R(3,3)等于6的证明

 

证明:在一个的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。

  • 任意选取一个端点,它有5条边和其他端点相连。
  • 根据鸽巢原理,5条边的颜色至少有3条相同,不失一般性设这种颜色是红色。
  • 在这3条边除了以外的3个端点,它们互相连结的边有3条。
    • 若这3条边中任何一条是红色,这条边的两个端点和相连的2边便组成一个红色三角形。
    • 若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。

而在内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点 的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理

https://zh.wikipedia.org/wiki/友谊定理

友谊定理(Friendship Theorem)说明:在一群人数不少于三的人群中,若任意两人都刚好只有一个共同认识的人,这群人中总有一人是所有人都认识的。

图论的角度来说,一幅图,若每个顶点都跟另一个顶点刚好只有一个共同相邻的顶点,这幅图中有一个顶点和其他顶点都相邻。

https://zh.wikipedia.org/wiki/完全图_(图论)

https://en.wikipedia.org/wiki/Complete_graph

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction).

Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, appeared already in the 13th century, in the work of Ramon Llull.[1] Such a drawing is sometimes referred to as a mystic rose.[2]

https://zh.wikipedia.org/wiki/平面图_(图论)

图论中,平面图是可以画在平面上并且使得不同的边可以互不交叠的。而如果一个图无论怎样都无法画在平面上,并使得不同的边互不交叠,那么这样的图不是平面图,或者称为非平面图。完全图K5和完全二分图K3,3是最“小”的非平面图。

[隐藏]

 
 
种类
有向图 · 无向图 · 有向无环图 · 二分图 · 连通图 · 完全图 · 标定图 · 超图 · 多重图 · 平面图 · 伪图 · 正则图 ·  · 赋权图 · 轮图 · 线图
 
结构
节点 · 顶点 ·  · 有向边 · 加权边 · 回路 ·  ·  ·  · 子图 ·  · 补图
 
属性

Ramsey's_theorem Friendship Theorem 友谊定理的更多相关文章

  1. 【翻译】Brewer's CAP Theorem CAP定理

    Brewer's CAP Theorem 原文地址:http://www.julianbrowne.com/article/brewers-cap-theorem Brewer’s (CAP) The ...

  2. Nyquist–Shannon sampling theorem 采样定理

    Nyquist–Shannon sampling theorem - Wikipedia https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_s ...

  3. (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)

    (多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...

  4. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

  5. Theorem、Proposition、Lemma和Corollary等的解释与区别

    Theorem:定理.是文章中重要的数学化的论述,一般有严格的数学证明. Proposition:可以翻译为命题,经过证明且interesting,但没有Theorem重要,比较常用. Lemma:一 ...

  6. Wilson's theorem在RSA题中运用

    引言 最近一段时间在再练习数论相关的密码学题目,自己之前对于数论掌握不是很熟练,借此机会先对数论基本的四大定理进行练习 这次的练习时基于Wilson's theorem(威尔逊定理)在RSA题目中的练 ...

  7. Godunov's 定理

    Godunov's theorem 转自Wiki 目录 Godunov's theorem 简介 定理 定理1. 单调保持性(Monotonicity preserving) 定理2. Godunov ...

  8. The Hundred Greatest Theorems

    The Hundred Greatest Theorems The millenium seemed to spur a lot of people to compile "Top 100& ...

  9. AI人工智能专业词汇集

    作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽 ...

随机推荐

  1. 记一次R的可视化使用-生成城市各个景点的多边形图

    项目中须要用到全国各个城市的景点坐标范围.须要人工审核各个景点的数据正确性和各个景点之间的距离分布.首先想到的就是使用R绘制每一个景点的多边形区域. 首先通过python,依据数据生成R画图代码,当然 ...

  2. WORD文档书签管理

    最近在浏览一个word超长文档,在文档中有几处要点用颜色做了标记,但是在下次查找的时候无法定位,还得一页页去翻,而且无法通过目录概览的形式查看总共做了多少处标记 于是想到了书签 原本以为在视图中能够设 ...

  3. android应用多线程守护让你非常难杀死它

    1.android 应用开启后启动一个服务 public class TestserviceActivity extends Activity { /** Called when the activi ...

  4. JQuery实现ajax跨域

    AJAX 的出现使得网页可以通过在后台与服务器进行少量数据交换,实现网页的局部刷新.但是出于安全的考虑,ajax不允许跨域通信.如果尝试从不同的域请求数据,就会出现错误.如果能控制数据驻留的远程服务器 ...

  5. unity, iOS集成微信

    将微信sdk直接拖进xcode会导致Library Search Paths是错的,需要手动改成如下样子(蓝色选中部分)才能通过编译:

  6. FPGA开发要懂得使用硬件分析仪调试——ILA

    0. ILA概述在FPGA开发中,当我们写完代码,进行仿真,确定设计没有问题后,下载到硬件上一般都能按照我们的设计意愿执行相应功能.但这也并非绝对的,有时候你会遇到一些突然情况,比如时序问题或者仿真时 ...

  7. layui动态渲染生成select的option值

    脚本语言:设定默认值:直接拼接,然后根据返回值渲染select// 动态渲染脚本类型下拉框 // 1.发送ajax请求得到data // 2.将data渲染到页面上 function getDataL ...

  8. IOS设计模式浅析之原型模式(Prototype)

    原型模式的定义 “使用原型实例指定创建对象的种类,并通过复制这个原型创建新的对象”.最初的定义出现于<设计模式>(Addison-Wesley,1994). 简单来理解就是根据这个原型创建 ...

  9. 谈谈 epmd

    在<Erlang/OTP 并发编程实战>中,对 epmd 有如下描述: epmd  代表 Erlang 端口映射守护进程(Erlang Port Mapper Daemon). 每启动一个 ...

  10. error LNK2019: unresolved external symbol 的一个解决方法

    在VS2010中使用opencv时,有时会出现如下类似的连接错误: 解决方法:根据头文件手动指定lib文件 #ifdef _DEBUG #pragma comment(lib,"*.lib& ...