使用GridSearchCV寻找最佳参数组合——机器学习工具箱代码
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.feature_extraction import FeatureHasher
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
import xgboost as xgb
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn import metrics
from matplotlib import pyplot as plt
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV def report(test_Y, pred_Y):
print("accuracy_score:")
print(metrics.accuracy_score(test_Y, pred_Y))
print("f1_score:")
print(metrics.f1_score(test_Y, pred_Y))
print("recall_score:")
print(metrics.recall_score(test_Y, pred_Y))
print("precision_score:")
print(metrics.precision_score(test_Y, pred_Y))
print("confusion_matrix:")
print(metrics.confusion_matrix(test_Y, pred_Y))
print("AUC:")
print(metrics.roc_auc_score(test_Y, pred_Y)) f_pos, t_pos, thresh = metrics.roc_curve(test_Y, pred_Y)
auc_area = metrics.auc(f_pos, t_pos)
plt.plot(f_pos, t_pos, 'darkorange', lw=2, label='AUC = %.2f' % auc_area)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
plt.title('ROC')
plt.ylabel('True Pos Rate')
plt.xlabel('False Pos Rate')
plt.show() if __name__== '__main__':
x, y = datasets.make_classification(n_samples=1000, n_features=100,n_redundant=0, random_state = 1)
train_X, test_X, train_Y, test_Y = train_test_split(x,
y,
test_size=0.2,
random_state=66)
#clf = GradientBoostingClassifier(n_estimators=100)
#clf.fit(train_X, train_Y)
#pred_Y = clf.predict(test_X)
#report(test_Y, pred_Y)
scoring= "f1"
parameters ={'n_estimators': range( 50, 200, 25), 'max_depth': range( 2, 10, 2)}
gsearch = GridSearchCV(estimator= GradientBoostingClassifier(), param_grid= parameters, scoring='accuracy', iid= False, cv= 5)
gsearch.fit(x, y)
print("gsearch.best_params_")
print(gsearch.best_params_)
print("gsearch.best_score_")
print(gsearch.best_score_)
效果:
gsearch.best_params_
{'max_depth': 4, 'n_estimators': 100}
gsearch.best_score_
0.868142228555714
使用GridSearchCV寻找最佳参数组合——机器学习工具箱代码的更多相关文章
- [转]Python机器学习工具箱
原文在这里 Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播 ...
- 【玩转Golang】 通过组合嵌入实现代码复用
应用开发中的一个常见情景,为了避免简单重复,需要在基类中实现共用代码,着同样有助于后期维护. 如果在以往的支持类继承的语言中,比如c++,Java,c#等,这很简单!可是go不支持继承,只能mixin ...
- 机器学习&恶意代码检测简介
Malware detection 目录 可执行文件简介 检测方法概述 资源及参考文献 可执行文件简介 ELF(Executable Linkable Format) linux下的可执行文件格式,按 ...
- #华为云·寻找黑马程序员#【代码重构之路】如何“消除”if/else
1. 背景 if/else是高级编程语言中最基础的功能,虽然 if/else 是必须的,但滥用 if/else,特别是各种大量的if/else嵌套,会对代码的可读性.可维护性造成很大伤害,对于阅读代码 ...
- #华为云·寻找黑马程序员#【代码重构之路】使用Pattern的正确姿势
1.问题 在浏览项目时,发现一段使用正则表达式的代码 这段代码,在循环里执行了Pattern.matches()方法进行正则匹配判断. 查看matches方法的源码,可以看到 每调用一次matches ...
- 华为云·寻找黑马程序员#【代码重构之路】如何“消除”if/else【华为云技术分享】
1. 背景 if/else是高级编程语言中最基础的功能,虽然 if/else 是必须的,但滥用 if/else,特别是各种大量的if/else嵌套,会对代码的可读性.可维护性造成很大伤害,对于阅读代码 ...
- spark 机器学习 knn 代码实现(二)
通过knn 算法规则,计算出s2表中的员工所属的类别原始数据:某公司工资表 s1(训练数据)格式:员工ID,员工类别,工作年限,月薪(K为单位) 101 a类 8年 ...
- 寻找猴王小游戏php代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 机器学习&恶意代码静态检测
目录 分析工具 方法概述 二进制灰度图 字节(熵)直方图 字符串信息 ELF结构信息 源码分析与OPcode FCG references: 分析工具 readelf elfparser ninja ...
随机推荐
- 关于主键(PRIMARY KEY)和自增(AUTO_INCREMENT)结合使用的知识点
1.主键(PRIMARY KEY)和自增(AUTO_INCREMENT)同时使用两种写法: a.主键(PRIMARY KEY)和自增(AUTO_INCREMENT)分两行写 创建一 ...
- Python替换文件内容
#!/usr/bin/env python import fileinput for line in fileinput.input('fansik',inplace=1): line = line. ...
- C# 函数2
//读写INI public class GF_INI { [DllImport("kernel32")] private stat ...
- SQLServer导入Excel,复杂操作
导入Excel 先导入的时候报错了, 提示未在本地计算机上注册"Microsoft.ACE.Oledb.12.0"提供程序.(System.Data),去网址下个软件安装就搞定了, ...
- Struts2笔记01——基础MVC架构(转)
原始内容:https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm Apache Struts 2是用来创建企业级Java ...
- 20145240 《Java程序设计》第五次实验报告
20145240 <Java程序设计>第五次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1452 指导教师:娄嘉鹏 实验日期:2016.05.06 实验 ...
- 深入理解JVM1
1 Java技术与Java虚拟机 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成: Java编程语言.Java类文件格式.Java虚拟机和Java应用程 ...
- iOS开发过程中常见错误问题及解决方案
错误原因:ld: x duplicate symbol for architecture x86_64 clang: error: linker command failed with exit co ...
- INSPIRED启示录 读书笔记 - 第3章 产品管理与项目管理
互联网让两者变得不同 在传统的零售软件领域,产品经理常常兼任项目经理的工作,随着互联网的发展,两者的职责区别也越来越明显 产品管理的职责是探索(定义)有价值的.可用的.可行的产品 项目管理的职责是关注 ...
- relativePath
比如: com.tenace tenace 2.0.1 ../pom.xml //刚开始无此句 com.spider engine 2.6.0-SNAPSHOT tenace作为pom项目已经发布至r ...