转换原始数据为块压缩的SequenceFIle

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; import com.hadoop.compression.lzo.LzoCodec; public class ToSeqFile extends Configured implements Tool {
@Override
public int run(String[] arg0) throws Exception {
Job job = new Job();
job.setJarByClass(getClass());
Configuration conf=getConf();
FileSystem fs = FileSystem.get(conf); FileInputFormat.setInputPaths(job, "/home/hadoop/tmp/tmplzo.txt");
Path outDir=new Path("/home/hadoop/tmp/tmplzo.out");
fs.delete(outDir,true);
FileOutputFormat.setOutputPath(job, outDir); //job.setMapperClass(IndentityMapper);
job.setNumReduceTasks(0);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
//设置OutputFormat为SequenceFileOutputFormat
job.setOutputFormatClass(SequenceFileOutputFormat.class);
//允许压缩
SequenceFileOutputFormat.setCompressOutput(job, true);
//压缩算法为gzip
SequenceFileOutputFormat.setOutputCompressorClass(job, LzoCodec.class);
//压缩模式为BLOCK
SequenceFileOutputFormat.setOutputCompressionType(job, CompressionType.BLOCK); return job.waitForCompletion(true)?0:1;
} public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new ToSeqFile(), args);
System.exit(res);
}
}

MR处理压缩后的sequenceFile

import org.apache.hadoop.io.Text;

import java.io.File;
import java.io.IOException;
import java.net.URI;
import java.util.Iterator;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.*;
import org.apache.hadoop.mapreduce.ContextFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MapFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Progressable;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
//import org.apache.hadoop.mapred.DeprecatedLzoTextInputFormat; import com.hadoop.compression.lzo.LzoCodec;
import com.hadoop.mapreduce.LzoTextInputFormat; public class compress extends Configured implements Tool {
private static final Log log = LogFactory.getLog(compress.class); private static class ProvinceMapper extends
Mapper<Object, Text, Text, Text> {
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
//System.out.println(value); // InputSplit inputSplit = context.getInputSplit();
//String fileName = ((FileSplit) inputSplit).getPath().toString(); //System.out.println(fileName);
context.write(value, value);
}
} private static class ProvinceReducer extends
Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
for (Text va : values) {
// System.out.println("reduce " + key);
context.write(key, key);
}
}
} public static void main(String[] args) throws Exception {
ToolRunner.run(new Configuration(), new compress(), args);
} public static final String REDUCES_PER_HOST = "mapreduce.sort.reducesperhost"; @Override
public int run(String[] args) throws Exception {
log.info("我的服务查询开始....................................."); long beg = System.currentTimeMillis();
int result = 0;
Configuration conf = new Configuration(); conf.set(
"io.compression.codecs",
"org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,com.hadoop.compression.lzo.LzopCodec");
conf.set("io.compression.codec.lzo.class",
"com.hadoop.compression.lzo.LzoCodec"); conf.setBoolean("mapreduce.map.output.compress", true);
conf.setClass("mapreduce.map.output.compression.codec", SnappyCodec.class, CompressionCodec.class);
// conf.setBoolean("mapreduce.output.fileoutputformat.compress", true); // 是否压缩输出
conf.setClass("mapreduce.output.fileoutputformat.compress.codec", SnappyCodec.class, CompressionCodec.class); String[] argArray = new GenericOptionsParser(conf, args)
.getRemainingArgs(); if (argArray.length != 2) {
System.err.println("Usage: compress <in> <out>");
System.exit(1);
} // Hadoop总共有5个Job.java
// /hadoop-2.0.0-cdh4.5.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/Job.java
Job job = new Job(conf, "compress");
job.setJarByClass(compress.class);
job.setMapperClass(ProvinceMapper.class);
job.setReducerClass(ProvinceReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //job.setInputFormatClass(LzoTextInputFormat.class); // TextInputFormat
// MyFileinput // 使用lzo索引文件作为输入文件
// job.setInputFormatClass(LzoTextInputFormat.class);
job.setInputFormatClass(SequenceFileInputFormat.class); // SequenceFileOutputFormat.set(job, LzoCodec.class); // 测试块大小
// FileInputFormat.setMinInputSplitSize(job, 150*1024*1024);
// FileInputFormat.setMinInputSplitSize(job, 301349250);
// FileInputFormat.setMaxInputSplitSize(job, 10000); // 推测执行的开关 另外还有针对map和reduce的对应开关
// job.setSpeculativeExecution(false);
FileInputFormat.addInputPath(job, new Path(argArray[0]));
FileOutputFormat.setOutputPath(job, new Path(argArray[1])); String uri = argArray[1];
Path path = new Path(uri);
FileSystem fs = FileSystem.get(URI.create(uri), conf);
if (fs.exists(path)) {
fs.delete(path);
} result = job.waitForCompletion(true) ? 0 : 1; // try {
// result = job.waitForCompletion(true) ? 0 : 1;
// } catch (ClassNotFoundException | InterruptedException e) {
// e.printStackTrace();
// }
long end = (System.currentTimeMillis() -beg) ;
System.out.println("耗时:" + end);
return result;
}
}

测试结果

文件大小 544M(未使用任何压缩)
耗时:73805

使用 seqencefile(block使用lzo压缩, 中间结果使用snappy压缩)

44207s

MR中使用sequnceFIle输入文件的更多相关文章

  1. MR中的combiner和partitioner

    1.combiner combiner是MR编程模型中的一个组件: 有些任务中map可能会产生大量的本地输出,combiner的作用就是在map端对输出先做一次合并,以减少map和reduce节点之间 ...

  2. 总结的MR中连接操作

    1 reduce side join在map端加上标记, 在reduce容器保存,然后作笛卡尔积缺点: 有可能oom 2 map side join  2.1 利用内存和分布式缓存,也有oom风险 2 ...

  3. MR中简单实现自定义的输入输出格式

    import java.io.DataOutput; import java.io.IOException; import java.util.HashMap; import java.util.Ma ...

  4. MR操作

    MR操作————Map.Partitioner.Shuffle.Combiners.Reduce 1.Map步骤 1.1 读取输入文件,解析成k-v对,其中每个k-v对调用一次map函数 1.2 写自 ...

  5. 【转】Hive配置文件中配置项的含义详解(收藏版)

    http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1 ...

  6. MapReduce中的Join

    一. MR中的join的两种方式: 1.reduce side join(面试题) reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文 ...

  7. Hive配置文件中配置项的含义详解(收藏版)

    这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容 问题导读: 1.hive输出格式的配置项是哪个? 2.hive被各种语言调用如何配置? 3.hive ...

  8. Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系和Application,Driver,Job,Task,Stage理解

    梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...

  9. Spark中Task,Partition,RDD、节点数、Executor数、core数目(线程池)、mem数

    Spark中Task,Partition,RDD.节点数.Executor数.core数目的关系和Application,Driver,Job,Task,Stage理解 from:https://bl ...

随机推荐

  1. 从零实现一个简易jQuery框架之一—jQuery框架概述

    我们知道,不管学习任何一门框架,了解其设计的理念.目的.总体的结构及核心特性对我们使用和后续的深入理解框架都是有很大的帮助的.因此在这里先梳理一下本人对jQuery框架的一些理解. 设计目的(为什么要 ...

  2. [转]ASP.NET Core 中文文档 第四章 MVC(4.3)过滤器

    本文转自:http://www.cnblogs.com/dotNETCoreSG/p/aspnetcore-4_4_3-filters.html 原文:Filters 作者:Steve Smith 翻 ...

  3. List< >泛型集合

    //一旦你确定了泛型的类型,集合里的元素已经有了确切的定义 List<int> list = new List<int>();  //创建泛型集合的对象 list.Add(); ...

  4. ActiveReport报表更改连接字符串及参数

    PageReport pr = new PageReport (new FileInfo("报表路径")); //报表路径如../Order/OrderSale.rdlx if(p ...

  5. Java 枚举 获取前后元素,下一个元素

    https://blog.csdn.net/jiangshanwe/article/details/79119219

  6. synchronized修饰普通方法和静态方法

    首先,要知道,synchronized关键字修饰普通方法时,获得的锁是对象锁,也就是this.而修饰静态方法时,锁是类锁,也就是类名.class. synchronized修饰普通方法 Synchro ...

  7. JavaScirpt(JS)——js介绍及ECMAScript

    一.JavaScript历史发展 JavaScript语言的历史:http://javascript.ruanyifeng.com/introduction/history.html 1994年12月 ...

  8. 【基础笔记】tomcat安装后运行出现出现问题(the JRE_HOME environment variable is not defined correctly This environment variabl)

    之前装好tomcat后正常运行  后来重装系统后,又一次配置环境时却报错. 在网上查找了两篇文章. https://blog.csdn.net/haleyliu123/article/details/ ...

  9. myeclipse 2014 闪退问题解决

    1.删掉Workspace下面的  \.metadata\.plugins\org.eclipse.core.resources一整个文件夹 2.删掉Workspace 下面的 \.metadata\ ...

  10. 字符串安全处理:CRT安全增强以及安全模板重载

    Secure Template Overloads :http://msdn.microsoft.com/en-us/library/ms175759(v=vs.80).aspx Security E ...