vggNet是从AlexNet而来,主要探索卷积神经网络的深度与性能之间的关系,通过反复堆叠3x3的卷积核(c中有1x1的卷积核,也只有c中有,c是16层)和2x2的最大池化层,vggNet构筑了16-19层深的卷积神经网络。

3x3卷积核:the smallest size to capture the notion of left/right,up/down,center

1x1卷积核:can be seen as a linear transformation of th input channels(followed by non-linearity)

整个网络的convolution stride固定为1,所有隐藏层的激活函数都用relu。

vggNet网络堆叠stride为1的3x3卷积核。两个3x3的卷积核堆叠的局部感受野相当于一个5x5的局部感受野,3个3x3的卷积核堆叠的局部感受野相当于7x7的局部感受野。堆叠的3x3卷积核比直接使用大的卷积核有两个好处:

1.增加非线性,因为每一层卷积核都有非线性激活函数relu,3层的3x3卷积核比7x7卷积核多进行了两次非线性变换,这样使得decision function more discriminative

2.减少了参数。假设通道数为c,3层3x3卷积核的参数量是3*(3*3*C*C),1层7x7卷积核的参数量是7*7*C*C。

vggNet中的1x1卷积核:GoogLeNet也采用了1x1卷积核,但不同的是,vggNet目的是增加非线性,而没有降维的目的。vggNet中要求1x1卷积核的输入输出维度应相等。

http://blog.csdn.net/wcy12341189/article/details/56281618 讲解vgg

http://blog.csdn.net/u014114990/article/details/51125776 多通道参数量的计算

Very Deep Convolutional Networks for Large-scale Image Recognition(vggnet)的更多相关文章

  1. VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition

    Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...

  2. Very Deep Convolutional Networks for Large-Scale Image Recognition

    Very Deep Convolutional Networks for Large-Scale Image Recognition 转载请注明:http://blog.csdn.net/stdcou ...

  3. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  4. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  5. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  6. 《DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks》研读笔记

    <DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality ...

  7. 2014-VGG-《Very deep convolutional networks for large-scale image recognition》翻译

    2014-VGG-<Very deep convolutional networks for large-scale image recognition>翻译 原文:http://xues ...

  8. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  9. 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds

    目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...

  10. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

随机推荐

  1. 【3dsMax安装失败,如何卸载、安装3dMax 2015?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  2. c#字典排序

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  3. npm是什么NPM的全称是Node Package Manager

    npm是什么NPM的全称是Node Package Manager

  4. 121、Django rest framework入门使用

    框架介绍 为你的django平台通过model生成对应的restfull api,并可以通过对应的http接口来进行 post .get.put.delete等操作.本文是也并非入门级别,不会带你去了 ...

  5. Python之装饰器、迭代器和生成器

    在学习python的时候,三大“名器”对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?“装饰”从字面意思 ...

  6. hihoCoder题目之Magic Box

    #include <iostream> #include <cmath> #include <cstdio> using namespace std; void s ...

  7. 深入理解JavaScript系列(25):设计模式之单例模式

    介绍 从本章开始,我们会逐步介绍在JavaScript里使用的各种设计模式实现,在这里我不会过多地介绍模式本身的理论,而只会关注实现.OK,正式开始. 在传统开发工程师眼里,单例就是保证一个类只有一个 ...

  8. linux基础-linux和unix的区别

    有时候我们对天天使用的Linux指令,只知道怎么用,却分不清概念用法区别,我觉得很有必要整理整理大家熟视无睹的一些linux概念区别. 首先说说unix和linux的区别: linux和unix的最大 ...

  9. 解决iframe IE8透明不兼容

    要使 ie8 的 iframe 的透明,需要设置两点: 设置 iframe 的 allowTransparency 属性值为 true: <iframe allowtransparency=&q ...

  10. CSS动画效果

    CSS变形效果 Transform translate:平移 translate(x,y) translateX(x) translateY(y)相对于元素原始位置平移. scale:缩放 大于1放大 ...