一眼题,答案就是\(C_m^m*d_{n-m}\)

就是从\(n\)个中选取\(m\)个在位,剩下的错排,之后就是乘法原理了

但是我发现我的错排公式竟然一直不会推

这个递推式很简单,就是\(d[1]=0,d[2]=1,d[n]=(n-1)*(d[n-2]+d[n-1)\)

其实是这样推出来的

我们从\(n\)个元素错排开始考虑,我们特殊判断一下第一个位置不能填\(1\),但是从\(2\)到\(n\)这\(n-1\)个数可以随便选,于是有\(n-1\)种可能

假设第一次放的的元素是\(k\)

之后剩下的就是

\[1\ 2\ 3\ ...k-1\ \ k+1\ \ k+2\ \ k+3...n
\]

我们可以将这些从小到大对应到\(1\)到\(n-1\),之后剩下的继续错排就好啦

于是就是\(d[n-1]\)

但是我们这个样子本质上是使得\(k\)那个位置不能放\(k+1\)的(因为\(k+1\)在去掉\(k\)之后是第\(k\)小的),于是我们还可以让\(k\)这个位置放\(k+1\),之后剩下的继续错排,于是就是\(d[n-2]\)

加法原理这两种不同的情况加起来,再利用乘法原理第一位上有\(n-1\)种选择

于是就有\(d[n]=(n-1)*(d[n-2]+d[n-1])\)

发现luogu日报里竟然又讲错排那就在这里收藏一下

小学生都能看懂的错排问题解析

这道题的代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define maxn 1000005
const int mod=1e9+7;
LL fac[maxn],d[maxn];
int T;
LL x,y;
inline LL read()
{
char c=getchar();
LL x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) return x=1,y=0,a;
LL r=exgcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
inline LL C(LL n,LL m)
{
LL r=exgcd(fac[m]*fac[n-m]%mod,mod,x,y);
x=(x%mod+mod)%mod;
return fac[n]*x%mod;
}
int main()
{
T=read();
fac[0]=1,fac[1]=1;
for(re int i=2;i<=1000000;i++) fac[i]=fac[i-1]*i%mod;
d[0]=1,d[1]=0,d[2]=1;
for(re int i=3;i<=1000000;i++) d[i]=(d[i-1]+d[i-2]%mod)*(i-1)%mod;
LL n,m;
while(T--)
{
n=read(),m=read();
printf("%lld",C(n,m)*d[n-m]%mod);
putchar(10);
}
return 0;
}

【[SDOI2016]排列计数】的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  3. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

  6. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  7. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  8. 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

    [BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...

  9. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  10. 数学【洛谷P4071】 [SDOI2016]排列计数

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

随机推荐

  1. DataGuard具体搭建环节

    在上一篇blog中,详细介绍DataGuard实现的原理,本篇介绍DataGuard的具体搭建过程. 主库打开日志,并强制force logging SQL>shutdown immediate ...

  2. 【3dsMax安装失败,如何卸载、安装3dMax 2012?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  3. TOJ 3031 Multiple

    Description a program that, given a natural number N between 0 and 4999 (inclusively), and M distinc ...

  4. python中时间对象生成及时间格式的转换

    1.将字符串的时间转换为时间戳 方法: a = "2013-10-10 23:40:00" 将其转换为时间数组 import time timeArray = time.strpt ...

  5. lua 遍历table

    lua中有四种主要的遍历一个table的方法. 第一种方法: for key, value in pairs(testtb) do xxxx end 这种方法是按照key哈希后的顺序遍历的.比如下面代 ...

  6. markdown语法简单总结

    最常用的十个MarkDown语法总结: 标题:只要在这段文字前加 # 号即可 # 一级标题 最大 ## 二级标题 ### 三级标题 无序列表:在文字前加上 - 或 * 有序列表:在文字前加1. 2.  ...

  7. 在 Azure Web 应用中创建 Java 应用程序

    本分步指南将通过 Azure Web 应用帮助您启动并运行示例 Java 应用程序.除 Java 外,Azure Web 应用还支持其他语言,如 PHP..NET.Node.JS.Python.Rub ...

  8. 1229:密码截获----java

    题目描述 Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的密码 进行通信,比如像这些ABBA,ABA,A,123321,但是他们有时会在开始或结束时加入一些无关的字符以防止别国破解.比 ...

  9. mysql 乱码问题的捣鼓

    mysql在ubuntu的终端下出现中文乱码的问题: 先学着在不改数据库的情况下对my.cnf配置文件进行修改, 主要的是设置 default-character-set=utf8 但是设置完后数据库 ...

  10. 集合之equals与hashCode方法

    一  equals equals方法是Object级的,默认对比两个对象的内存地址,很多类都重写了该方法,对比对象的实际内容,一般对比同一类对象相同属性的属性值是否相同. 二 hashCode 1.哈 ...