一眼题,答案就是\(C_m^m*d_{n-m}\)

就是从\(n\)个中选取\(m\)个在位,剩下的错排,之后就是乘法原理了

但是我发现我的错排公式竟然一直不会推

这个递推式很简单,就是\(d[1]=0,d[2]=1,d[n]=(n-1)*(d[n-2]+d[n-1)\)

其实是这样推出来的

我们从\(n\)个元素错排开始考虑,我们特殊判断一下第一个位置不能填\(1\),但是从\(2\)到\(n\)这\(n-1\)个数可以随便选,于是有\(n-1\)种可能

假设第一次放的的元素是\(k\)

之后剩下的就是

\[1\ 2\ 3\ ...k-1\ \ k+1\ \ k+2\ \ k+3...n
\]

我们可以将这些从小到大对应到\(1\)到\(n-1\),之后剩下的继续错排就好啦

于是就是\(d[n-1]\)

但是我们这个样子本质上是使得\(k\)那个位置不能放\(k+1\)的(因为\(k+1\)在去掉\(k\)之后是第\(k\)小的),于是我们还可以让\(k\)这个位置放\(k+1\),之后剩下的继续错排,于是就是\(d[n-2]\)

加法原理这两种不同的情况加起来,再利用乘法原理第一位上有\(n-1\)种选择

于是就有\(d[n]=(n-1)*(d[n-2]+d[n-1])\)

发现luogu日报里竟然又讲错排那就在这里收藏一下

小学生都能看懂的错排问题解析

这道题的代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define maxn 1000005
const int mod=1e9+7;
LL fac[maxn],d[maxn];
int T;
LL x,y;
inline LL read()
{
char c=getchar();
LL x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) return x=1,y=0,a;
LL r=exgcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
inline LL C(LL n,LL m)
{
LL r=exgcd(fac[m]*fac[n-m]%mod,mod,x,y);
x=(x%mod+mod)%mod;
return fac[n]*x%mod;
}
int main()
{
T=read();
fac[0]=1,fac[1]=1;
for(re int i=2;i<=1000000;i++) fac[i]=fac[i-1]*i%mod;
d[0]=1,d[1]=0,d[2]=1;
for(re int i=3;i<=1000000;i++) d[i]=(d[i-1]+d[i-2]%mod)*(i-1)%mod;
LL n,m;
while(T--)
{
n=read(),m=read();
printf("%lld",C(n,m)*d[n-m]%mod);
putchar(10);
}
return 0;
}

【[SDOI2016]排列计数】的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  3. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

  6. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  7. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  8. 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

    [BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...

  9. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  10. 数学【洛谷P4071】 [SDOI2016]排列计数

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

随机推荐

  1. <th>折行显示

    设置了一些框架的样式导致折行显示失效,解决办法: https://jingyan.baidu.com/article/3a2f7c2e24cd1826afd611e7.html

  2. Ionic3,懒加载(二)

    Ionic懒加载: 普通的ionic项目中,创建好每一个Component页面后,都需要在app.module.ts中进行declaration(声明)后才能进行调用,而这样的声明方式,及在APP加载 ...

  3. C# 操作字符串

    //(1)字符访问(下标访问s[i])            s ="ABCD";            Console.WriteLine(s[0]); // 输出"A ...

  4. (Frontend Newbie)Web简史

    前段时间在微博上看到有人问,前端这几年发展这么迅猛,各种新技术.新框架层出不穷,我们究竟怎么学习这些新技术才能跟得上脚步,毕竟精力有限,逐个学习不现实.个人认为,没有太大的必要去追逐那些新潮的技术.原 ...

  5. 第十七章:使用media插件来播放声音

    前面已经讲过如何基于push notification自定义sound,但是还是存在几个问题: IOS app在前台运行的时候,如何播放sound?因为这个时候push notification是不起 ...

  6. [openStack]使用Fuel安装OpenStack juno的fuel_master

    安装OpenStack是一件很复杂的事情,特别是在想目中,如果一个组件一个组件,一台一台的coding部署,估计太消耗时间,而且出错的概率很高,所以使用工具推送部署的效率就很高了,而且必须得可靠.mi ...

  7. JQuery脚本-通过禁用按钮防止表单重复提交

    <script type="text/javascript"> /* jquer 脚本,避免重复提交 隐藏点击的submit,后在他之后插入同名button伪装成被隐藏 ...

  8. linux下统计文本行数的各种方法(二)

    上一篇讲的都是统计单个文件的方法,直接在命令行执行就可以.现在试试脚本的方式,统计多个文件的行数 一.统计目录下所有文件的文件数及所有行数 脚本暂时命名为count.sh,代码如下: #!/bin/b ...

  9. 【mysql】mysql数据库安装

    今天一直在测功能,整理用例,所以没有去调项目,想到之前有小伙伴求助数据库安装,还远程了一番,所以,就整理一下,数据库在测试工作中还是挺重要的,不能本地测试改个数据都去找开发小哥哥吧,是不是不太好呢,妹 ...

  10. asp.net FileUpload上传文件夹并检测所有子文件

    1.在FileUpload控件添加一个属性 webkitdirectory=""就可以上传文件夹了 <asp:FileUpload ID="FileUpload1& ...