Description

N children are living in a tree with exactly N nodes, on each node there lies either a boy or a girl.  A girl is said to be protected, if the distance between the girl and her nearest boy is no more than D.  You want to do something good, so that each girl on the tree will be protected. On each step, you can choose two nodes, and swap the children living on them. What is the minimum number of steps you have to take to fulfill your wish?
 

Input

The first line has a number T (T <= 150) , indicating the number of test cases.  In a case, the first line contain two number n (1 <= n <= 50), D (1 <= D <= 10000000), Which means the number of the node and the distance between the girls and boys.  The next lines contains n number. The i th number means the i th node contains a girl or a boy. (0 means girl 1 means boy), The follow n - 1 lines contains a, b, w, means a edge connect a th node and b th node, and the length of the edge is w (1 <= w <= 10000000).
 

Output

For every case, you should output "Case #t: " at first, without quotes. The t is the case number starting from 1.  Then follows the answer, -1 meas you can't comlete it, and others means the minimum number of the times.

题目大意:一棵树上有n个结点,每个结点有一个男生或者一个妹纸,每条边有一个距离,问最少交换多少个人,使得妹纸在距离D内至少有一个男生。。。

思路:换句话说,这题可以理解为:交换多少个0或1,使得每个结点在D的距离内有一个1(1的男孩纸)。

那么用DLX搜索,每一列代表一个点。每一行代表一个点,每行的结点为这个点为1可以保护的所有点(包括自己)。

然后套DLX。

加入两个剪枝:搜索到的交换若大于当前答案,则剪枝。在每一层作一个乐观估计,估计最少还需要选出多少个点,若大于点为1的点数,则剪枝。

这题正解大概为DP。我不会。

代码(1171MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std; const int MAXN = ;
const int MAXC = MAXN;
const int MAXR = MAXN;
const int MAXP = MAXR * MAXN + MAXC; int boy[MAXN];
int mat[MAXN][MAXN];
int n, D, boys; struct DLX {
int n, sz;//列数,结点总数
int sum[MAXC];//每列拥有的结点数
int row[MAXP], col[MAXP];//结点所在的行和列
int left[MAXP], right[MAXP], up[MAXP], down[MAXP];//十字链表
int ans, anst[MAXR]; void init(int nn) {
n = nn;
for(int i = ; i <= n; ++i) {
up[i] = down[i] = i;
left[i] = i - ; right[i] = i + ;
col[i] = i;
}
right[n] = ; left[] = n;
sz = n + ;
memset(sum, , sizeof(sum));
} void add_row(int r, vector<int> &columns) {
int first = sz;
for(int i = , len = columns.size(); i < len; ++i) {
int c = columns[i];
left[sz] = sz - ; right[sz] = sz + ; down[sz] = c; up[sz] = up[c];
down[up[c]] = sz; up[c] = sz;
row[sz] = r; col[sz] = c;
++sum[c]; ++sz;
}
right[sz - ] = first; left[first] = sz - ;
} void remove(int c) {
for(int i = down[c]; i != c; i = down[i]) {
left[right[i]] = left[i];
right[left[i]] = right[i];
}
} void restore(int c) {
for(int i = down[c]; i != c; i = down[i]) {
left[right[i]] = i;
right[left[i]] = i;
}
} bool vis[MAXC]; int A() {
memset(vis, , sizeof(vis));
int ret = ;
for(int i = right[]; i != ; i = right[i]) if(!vis[i]) {
++ret;
for(int j = down[i]; j != i; j = down[j]) {
for(int k = right[j]; k != j; k = right[k]) vis[col[k]] = true;
}
}
return ret;
} void dfs(int dep) {
if(dep + A() > boys) return ;
int tmp = ;
for(int i = ; i < dep; ++i) tmp += boy[anst[i]];
if(dep - tmp >= ans) return ;
if(right[] == ) {
ans = dep - tmp;
return ;
}
int c = right[];
for(int i = right[]; i != ; i = right[i]) if(sum[i] < sum[c]) c = i;
for(int i = down[c]; i != c; i = down[i]) {
anst[dep] = row[i];
remove(i);
for(int j = right[i]; j != i; j = right[j]) remove(j);
dfs(dep + );
for(int j = left[i]; j != i; j = left[j]) restore(j);
restore(i);
}
} bool solve() {
ans = n + ;
dfs();
return ans != n + ;
}
} S; void floyd() {
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i) if(mat[i][k] <= D)
for(int j = ; j <= n; ++j) if(mat[k][j] <= D)
mat[i][j] = min(mat[i][j], mat[i][k] + mat[k][j]);
} int main() {
int T; scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &D);
memset(mat, 0x3f, sizeof(mat));
boys = ;
for(int i = ; i <= n; ++i) scanf("%d", &boy[i]), boys += boy[i];
for(int i = ; i < n; ++i) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
mat[u][v] = mat[v][u] = c;
}
for(int i = ; i <= n; ++i) mat[i][i] = ;
floyd();
S.init(n);
for(int i = ; i <= n; ++i) {
vector<int> columns;
for(int j = ; j <= n; ++j) if(mat[i][j] <= D) columns.push_back(j);
S.add_row(i, columns);
}
bool flag = S.solve();
printf("Case #%d: ", t);
if(flag) printf("%d\n", S.ans);
else puts("-1");
}
}

HDU 4735 Little Wish~ lyrical step~(DLX搜索)(2013 ACM/ICPC Asia Regional Chengdu Online)的更多相关文章

  1. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  2. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  3. HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online)

    HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online) 题目链接http://acm.hdu.edu.cn/showp ...

  4. HDU 5874 Friends and Enemies 【构造】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Friends and Enemies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  5. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  6. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  7. HDU 4749 Parade Show 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4749 题目大意:给一个原序列N,再给出一个序列M,问从N中一共可以找出多少个长度为m的序列,序列中的数 ...

  8. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  9. HDU 4751 Divide Groups 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 题目大意:判断一堆人能否分成两组,组内人都互相认识. 解题思路:如果两个人不是相互认识,该两人之 ...

随机推荐

  1. c语言描述的双向链表的基本操作

    #include<stdio.h> #include<stdlib.h> #define ok 1 #define error 0 typedef int Status; ty ...

  2. css的基础用法(上)

    css定义: CSS层叠式样表(Cascading  Style Sheets)是一种用来表现html或xml等文件样式的计算机语言.CSS不仅可以静态的修饰网页,还可以配合各种脚本语言动态地对网页个 ...

  3. oracle中lock和latch的用途

    本文向各位阐述Oracle的Latch机制,Latch,用金山词霸翻译是门插栓,闭锁,专业术语叫锁存器,我开始接触时就不大明白为什么不写Lock,不都是锁吗?只是翻译不同而以?研究过后才知道两者有很大 ...

  4. 为什么你的 App 没人用?请按这8条逐一对照

    为什么你的 App 没人用?请按这8条逐一对照 Kamo Asatryan 可能是这个世界上关注创新生态系统最多的一些人之一,他观察过数百个移动端 App,深入思考过它们的运行机制,并为它们的快速增长 ...

  5. poj_1306_Combinations

    Computing the exact number of ways that N things can be taken M at a time can be a great challenge w ...

  6. ABAP术语-Function Group

    Function Group 原文:http://www.cnblogs.com/qiangsheng/archive/2008/02/13/1067699.html Group of logical ...

  7. bootstrap模态框传值操作

    1.bootstrap模态框之html代码 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"& ...

  8. 【控制连接实现信息共享---linux和设备下ssh和远程连接telnet服务的简单搭建】

    SSH的配置 空密码登陆ssh server 如果要登录ssh server通常要在server和client之间采取具有共同加密的秘钥,若每次当client想要了:连接ssh server时都要手工 ...

  9. javascript中几种this指向问题

    javascript中几种this指向问题   首先必须要说的是,this 永远指向函数运行时所在的对象,而不是函数被创建时所在的对象. (1).作为函数名调用   函数作为全局对象调用,this指向 ...

  10. 禁止鼠标点右键 - 防止刷新页面 - 禁止复制 chrome 和 firefox不能复制

    document.oncontextmenu = function () {//点右键,啥反应都没有了 return false; } document.onkeydown = function () ...