Description

N children are living in a tree with exactly N nodes, on each node there lies either a boy or a girl.  A girl is said to be protected, if the distance between the girl and her nearest boy is no more than D.  You want to do something good, so that each girl on the tree will be protected. On each step, you can choose two nodes, and swap the children living on them. What is the minimum number of steps you have to take to fulfill your wish?
 

Input

The first line has a number T (T <= 150) , indicating the number of test cases.  In a case, the first line contain two number n (1 <= n <= 50), D (1 <= D <= 10000000), Which means the number of the node and the distance between the girls and boys.  The next lines contains n number. The i th number means the i th node contains a girl or a boy. (0 means girl 1 means boy), The follow n - 1 lines contains a, b, w, means a edge connect a th node and b th node, and the length of the edge is w (1 <= w <= 10000000).
 

Output

For every case, you should output "Case #t: " at first, without quotes. The t is the case number starting from 1.  Then follows the answer, -1 meas you can't comlete it, and others means the minimum number of the times.

题目大意:一棵树上有n个结点,每个结点有一个男生或者一个妹纸,每条边有一个距离,问最少交换多少个人,使得妹纸在距离D内至少有一个男生。。。

思路:换句话说,这题可以理解为:交换多少个0或1,使得每个结点在D的距离内有一个1(1的男孩纸)。

那么用DLX搜索,每一列代表一个点。每一行代表一个点,每行的结点为这个点为1可以保护的所有点(包括自己)。

然后套DLX。

加入两个剪枝:搜索到的交换若大于当前答案,则剪枝。在每一层作一个乐观估计,估计最少还需要选出多少个点,若大于点为1的点数,则剪枝。

这题正解大概为DP。我不会。

代码(1171MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std; const int MAXN = ;
const int MAXC = MAXN;
const int MAXR = MAXN;
const int MAXP = MAXR * MAXN + MAXC; int boy[MAXN];
int mat[MAXN][MAXN];
int n, D, boys; struct DLX {
int n, sz;//列数,结点总数
int sum[MAXC];//每列拥有的结点数
int row[MAXP], col[MAXP];//结点所在的行和列
int left[MAXP], right[MAXP], up[MAXP], down[MAXP];//十字链表
int ans, anst[MAXR]; void init(int nn) {
n = nn;
for(int i = ; i <= n; ++i) {
up[i] = down[i] = i;
left[i] = i - ; right[i] = i + ;
col[i] = i;
}
right[n] = ; left[] = n;
sz = n + ;
memset(sum, , sizeof(sum));
} void add_row(int r, vector<int> &columns) {
int first = sz;
for(int i = , len = columns.size(); i < len; ++i) {
int c = columns[i];
left[sz] = sz - ; right[sz] = sz + ; down[sz] = c; up[sz] = up[c];
down[up[c]] = sz; up[c] = sz;
row[sz] = r; col[sz] = c;
++sum[c]; ++sz;
}
right[sz - ] = first; left[first] = sz - ;
} void remove(int c) {
for(int i = down[c]; i != c; i = down[i]) {
left[right[i]] = left[i];
right[left[i]] = right[i];
}
} void restore(int c) {
for(int i = down[c]; i != c; i = down[i]) {
left[right[i]] = i;
right[left[i]] = i;
}
} bool vis[MAXC]; int A() {
memset(vis, , sizeof(vis));
int ret = ;
for(int i = right[]; i != ; i = right[i]) if(!vis[i]) {
++ret;
for(int j = down[i]; j != i; j = down[j]) {
for(int k = right[j]; k != j; k = right[k]) vis[col[k]] = true;
}
}
return ret;
} void dfs(int dep) {
if(dep + A() > boys) return ;
int tmp = ;
for(int i = ; i < dep; ++i) tmp += boy[anst[i]];
if(dep - tmp >= ans) return ;
if(right[] == ) {
ans = dep - tmp;
return ;
}
int c = right[];
for(int i = right[]; i != ; i = right[i]) if(sum[i] < sum[c]) c = i;
for(int i = down[c]; i != c; i = down[i]) {
anst[dep] = row[i];
remove(i);
for(int j = right[i]; j != i; j = right[j]) remove(j);
dfs(dep + );
for(int j = left[i]; j != i; j = left[j]) restore(j);
restore(i);
}
} bool solve() {
ans = n + ;
dfs();
return ans != n + ;
}
} S; void floyd() {
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i) if(mat[i][k] <= D)
for(int j = ; j <= n; ++j) if(mat[k][j] <= D)
mat[i][j] = min(mat[i][j], mat[i][k] + mat[k][j]);
} int main() {
int T; scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &D);
memset(mat, 0x3f, sizeof(mat));
boys = ;
for(int i = ; i <= n; ++i) scanf("%d", &boy[i]), boys += boy[i];
for(int i = ; i < n; ++i) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
mat[u][v] = mat[v][u] = c;
}
for(int i = ; i <= n; ++i) mat[i][i] = ;
floyd();
S.init(n);
for(int i = ; i <= n; ++i) {
vector<int> columns;
for(int j = ; j <= n; ++j) if(mat[i][j] <= D) columns.push_back(j);
S.add_row(i, columns);
}
bool flag = S.solve();
printf("Case #%d: ", t);
if(flag) printf("%d\n", S.ans);
else puts("-1");
}
}

HDU 4735 Little Wish~ lyrical step~(DLX搜索)(2013 ACM/ICPC Asia Regional Chengdu Online)的更多相关文章

  1. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  2. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  3. HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online)

    HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online) 题目链接http://acm.hdu.edu.cn/showp ...

  4. HDU 5874 Friends and Enemies 【构造】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Friends and Enemies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  5. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  6. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  7. HDU 4749 Parade Show 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4749 题目大意:给一个原序列N,再给出一个序列M,问从N中一共可以找出多少个长度为m的序列,序列中的数 ...

  8. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  9. HDU 4751 Divide Groups 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 题目大意:判断一堆人能否分成两组,组内人都互相认识. 解题思路:如果两个人不是相互认识,该两人之 ...

随机推荐

  1. 多线程编程-设计模式之保护性暂挂(Guarded Suspesion)模式

    Guarded Suspension模式的架构 核心是一个受保护方法(Guarded Method).该方法需要执行其所要真正执行的操作时需要满足特定的条件(Predicate,以下称之为保护条件). ...

  2. 重写equals方法(未完)

    equals方法是我们日常编程中很常见的方法,Object中对这个方法的解释如下: boolean equals(Object obj) 指示其他某个对象是否与此对象“相等”. 查看该方法的底层代码如 ...

  3. Oracle listener.log 清理

    在oracle中,如果不对监听日志文件进行截断(定期清理),那么监听日志文件会变得越来越大,由于一些老旧的OS不支持2GB以上的文件,故当listener.log文件超过2GB时,会出现无法处理新的连 ...

  4. Spring-Day02-依赖注入-作业

    配置beans约束自动提示 spring-framework-4.2.4.RELEASE\docs\spring-framework-reference\html中打开xsd-configuratio ...

  5. java中静态代理和动态代理

    一.概述 代理是一种模式,提供了对目标对象的间接访问方式,即通过代理访问目标对象.如此便于在目标实现的基础上增加额外的功能操作,前拦截,后拦截等,以满足自身的业务需求,同时代理模式便于扩展目标对象功能 ...

  6. oracle中connect by语句的优化

    很多应用中都会有类似组织机构的表,组织机构的表又通常是典型的层次结构(没有循环节点).于是通过组织控制数据权限的时候,许多人都喜欢通过connect by获得组织信息,然后再过滤目标数据. 在有些情况 ...

  7. 使用Python对SQLite数据库操作

    SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在IOS和Android的APP中都可以集成. Python内 ...

  8. (第01节)IDEA快速搭建web项目

    在配置好环境,熟悉了IDEA的基本操作后,就要开始搭建WEB项目了: File——>new——>project——>然后选择Maven 点击Create from archetype ...

  9. bootstrap实现分页

    bootstrap分页功能 写前端都会面临的一个问题就是分页,如果是纯js分页也是可以的,只是可能代码量比较大,所以今天写一个关于用bootstrap框架分页的例子,希望以后可以帮助到一些对这方面比较 ...

  10. vue兄弟组件传值$on多次执行的问题

    首先附上如何进行兄弟组件通信的方法链接 https://segmentfault.com/a/1190000011882494 下面是$on多次执行的解决办法 https://blog.csdn.ne ...