hdu 5294 Tricks Device 最短路建图+最小割
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294
Tricks Device
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 375 Accepted Submission(s): 98
to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end
of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.
Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent
Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.
In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.
The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 1
2 6
题意:
1到n点有最短路。
问你 最少破坏多少条路会阻断全部最短路。
再问你 最多破坏多少边,仍有和原始图的最短路一样长度的最短路存在。
做法:
先跑最短路。
然后通过 dist[i]-dist[j] == map[j][i]
假设符合的话 map[j][i]就是 最短路中的一条边。
然后把这些最短路的边 建图,跑最大流,流量是有多少边权同样的重边,跑出来就是最小割。也就是阻断全部最短路的最小花费。花费是每破坏一条路为1。
所以出来的值。就是破坏了多少的边。
然后如最大流相同的建边,跑最短路,边权为1。跑出来的最短路dist[n]。就是 跨越边数最少的 最短路的边数了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <string.h>
using namespace std; const int MAXN = 2200;//点数的最大值
const int MAXM = 800000;//边数的最大值
const int INF2 = 2000000000;
struct Edge1
{
int to,next,cap,flow;
}edge[MAXM];//注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
void init()
{
tol = 0;
memset(head,-1,sizeof (head));
}
void add (int u,int v,int w,int rw = 0)//网络流要有反向弧
{
edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = 0;
edge[tol].next = head[u]; head[u] = tol++;
edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = 0;
edge[tol].next = head[v]; head[v] = tol++;
}
int Q[MAXN];
void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0] = 1;
int front = 0, rear = 0;
dep[end] = 0;
Q[rear++] = end;
while(front != rear)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i]. to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u] + 1;
gap[dep[v]]++;
}
}
}
int S[MAXN];
int sap(int start,int end, int N)//有几个点
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
int i;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF2;
int inser;
for( i = 0;i < top;i++)
{
if(Min > edge[S[i]].cap - edge[S[i]].flow)
{
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
}
for( i = 0;i < top;i++)
{
edge[S[i]]. flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for( i = cur[u]; i != -1; i = edge[i]. next)
{
v = edge[i]. to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = i;
break;
}
}
if(flag)
{
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for( i = head[u]; i != -1; i = edge[i].next)
{
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^1].to;
}
return ans;
} #define typec int
typec INF=0x3f3f3f3f;//防止后面溢出。这个不能太大
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(typec cost[][MAXN],typec lowcost[],int n,int beg)
{
for(int i=0;i<n;i++)
{
lowcost[i]=INF;
vis[i]=false;
pre[i]=-1;
}
lowcost[beg]=0;
for(int j=0;j<n;j++)
{
int k=-1;
int Min=INF;
for(int i=0;i<n;i++)
if(!vis[i]&&lowcost[i]<Min)
{
Min=lowcost[i];
k=i;
}
if(k==-1)break;
vis[k]=true;
for(int i=0;i<n;i++)
if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i])
{
lowcost[i]=lowcost[k]+cost[k][i];
pre[i]=k;
}
}
}
int cost2[MAXN][MAXN];
int dist2[MAXN]; int cost[MAXN][MAXN];
int num[MAXN][MAXN];
int has[MAXN];
int dist[MAXN];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
memset(cost,INF,sizeof cost);
memset(num,0,sizeof num);
for(int i=0;i<n;i++)
cost[i][i]=0; for(int i=1;i<=m;i++)//双向 有重边
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--;
v--;
if(cost[u][v]>w)
{
cost[u][v]=w;
cost[v][u]=w;
num[u][v]=1;
num[v][u]=1;
}
else if(cost[u][v]==w)
{
num[u][v]++;
num[v][u]++;
} }
Dijkstra(cost,dist,n,0);// wuxiangda bulian memset(cost2,INF,sizeof cost2);
for(int i=0;i<n;i++)
cost2[i][i]=0; for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i!=j)
if(dist[i]-dist[j]==cost[i][j])
{
cost2[j][i]=1;
add(j,i,num[i][j]);
}
}
}
Dijkstra(cost2,dist2,n,0);
printf("%d %d\n",sap(0,n-1,n),m-dist2[n-1]);
}
return 0;
}
hdu 5294 Tricks Device 最短路建图+最小割的更多相关文章
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 5294 Tricks Device 最短路+最大流
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意: 给你个无向图: 1.求最少删除几条边就能破坏节点1到节点n的最短路径, 2.最多能删除 ...
- HDU 5294 Tricks Device (最大流+最短路)
题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...
- HDU 5294 Tricks Device(多校2015 最大流+最短路啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...
- HDU 5294 Tricks Device 网络流 最短路
Tricks Device 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 Description Innocent Wu follows D ...
- SPOJ-OPTM Optimal Marks ★★(按位建图 && 最小割)
[题意]给出一个无向图,每个点有一个标号mark[i],不同点可能有相同的标号.对于一条边(u, v),它的权值定义为mark[u] xor mark[v].现在一些点的标号已定,请决定剩下点的标号, ...
- bzoj 1001 平面图转对偶图 最短路求图最小割
原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...
- hdu 5294 Tricks Device(2015多校第一场第7题)最大流+最短路
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意:给你n个墓室,m条路径,一个人在1号墓室(起点),另一个人在n号墓室(终点),起点的那 ...
- HDU 5294 Tricks Device (最短路,最大流)
题意:给一个无向图(连通的),张在第n个点,吴在第1个点,‘吴’只能通过最短路才能到达‘张’,两个问题:(1)张最少毁掉多少条边后,吴不可到达张(2)吴在张毁掉最多多少条边后仍能到达张. 思路:注意是 ...
随机推荐
- Unable to connect to vulnerability scanner
问题: "Unable to connect to vulnerability scanner. If the system has been updated recently the ...
- zookeeper与activemq整合
(1)zookeeper与activemq原理 使用ZooKeeper实现的Master-Slave实现方式,是对ActiveMQ进行高可用的一种有效的解决方案,高可用的原理:使用ZooKeeper( ...
- [jquery] ajax parsererror
http://stackoverflow.com/questions/5061310/jquery-returning-parsererror-for-ajax-request 方法一: 直接去掉 d ...
- HDU 1061.Rightmost Digit-规律题 or 快速幂取模
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- UTC时间
世界的每个地区都有自己的本地时间,在Internet及无线电通信时,时间的统一非常重要! 整个地球分为二十四时区,每个时区都有自己的本地时间.在国际无线电通信中,为统一而普遍使用一个标准时间,称为通用 ...
- dutacm.club Water Problem(矩阵快速幂)
Water Problem Time Limit:3000/1000 MS (Java/Others) Memory Limit:163840/131072 KB (Java/Others)Tot ...
- ba resme
Resume Name: Zhou Heng Gender: Male Email : jackyzhouheng@gmail.com Self Assessment: I have more tha ...
- 【莫队算法】bzoj3289 Mato的文件管理
莫队算法,离线回答询问,按一定大小(sqrt(n*log(n))左右)将答案分块,按 ①左端点所在块②右端点 双关键字排序. 然后暴力转移. 转移的时候用树状数组. O(n*sqrt(n)*log(n ...
- 【周期性/容斥+二分】POJ2773-HAPPY 2006
[题目大意] 求与n互质的第k个数. [思路] 先求出小于k且与n互质的数,再利用gcd(bt+a,b)=gcd(a,b)的性质求解,效率低.枚举与n互质的数的效率是O(nlogn),求解第k个数的效 ...
- Radius报文解析(转)
RADIUS ,是远程认证拨号用户服务的简称.RADIUS原先设计的目的是为拨号用户进行认证和计费.后来经过多次改进,形成了一项通用的认证计费协议,主要完成在网络接入设备和认证服务器之间承载认证.授权 ...