链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294

Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 375    Accepted Submission(s): 98

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants
to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end
of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent
Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
 
Input
There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
 
Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 
Sample Input
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 1
 
Sample Output
2 6
 

题意:

1到n点有最短路。

问你 最少破坏多少条路会阻断全部最短路。

再问你 最多破坏多少边,仍有和原始图的最短路一样长度的最短路存在。

做法:

先跑最短路。

然后通过  dist[i]-dist[j] == map[j][i]

假设符合的话  map[j][i]就是 最短路中的一条边。

然后把这些最短路的边 建图,跑最大流,流量是有多少边权同样的重边,跑出来就是最小割。也就是阻断全部最短路的最小花费。花费是每破坏一条路为1。

所以出来的值。就是破坏了多少的边。

然后如最大流相同的建边,跑最短路,边权为1。跑出来的最短路dist[n]。就是  跨越边数最少的 最短路的边数了。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <string.h>
using namespace std; const int MAXN = 2200;//点数的最大值
const int MAXM = 800000;//边数的最大值
const int INF2 = 2000000000;
struct Edge1
{
int to,next,cap,flow;
}edge[MAXM];//注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
void init()
{
tol = 0;
memset(head,-1,sizeof (head));
}
void add (int u,int v,int w,int rw = 0)//网络流要有反向弧
{
edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = 0;
edge[tol].next = head[u]; head[u] = tol++;
edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = 0;
edge[tol].next = head[v]; head[v] = tol++;
}
int Q[MAXN];
void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0] = 1;
int front = 0, rear = 0;
dep[end] = 0;
Q[rear++] = end;
while(front != rear)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i]. to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u] + 1;
gap[dep[v]]++;
}
}
}
int S[MAXN];
int sap(int start,int end, int N)//有几个点
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
int i;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF2;
int inser;
for( i = 0;i < top;i++)
{
if(Min > edge[S[i]].cap - edge[S[i]].flow)
{
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
}
for( i = 0;i < top;i++)
{
edge[S[i]]. flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for( i = cur[u]; i != -1; i = edge[i]. next)
{
v = edge[i]. to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = i;
break;
}
}
if(flag)
{
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for( i = head[u]; i != -1; i = edge[i].next)
{
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^1].to;
}
return ans;
} #define typec int
typec INF=0x3f3f3f3f;//防止后面溢出。这个不能太大
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(typec cost[][MAXN],typec lowcost[],int n,int beg)
{
for(int i=0;i<n;i++)
{
lowcost[i]=INF;
vis[i]=false;
pre[i]=-1;
}
lowcost[beg]=0;
for(int j=0;j<n;j++)
{
int k=-1;
int Min=INF;
for(int i=0;i<n;i++)
if(!vis[i]&&lowcost[i]<Min)
{
Min=lowcost[i];
k=i;
}
if(k==-1)break;
vis[k]=true;
for(int i=0;i<n;i++)
if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i])
{
lowcost[i]=lowcost[k]+cost[k][i];
pre[i]=k;
}
}
}
int cost2[MAXN][MAXN];
int dist2[MAXN]; int cost[MAXN][MAXN];
int num[MAXN][MAXN];
int has[MAXN];
int dist[MAXN];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
memset(cost,INF,sizeof cost);
memset(num,0,sizeof num);
for(int i=0;i<n;i++)
cost[i][i]=0; for(int i=1;i<=m;i++)//双向 有重边
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--;
v--;
if(cost[u][v]>w)
{
cost[u][v]=w;
cost[v][u]=w;
num[u][v]=1;
num[v][u]=1;
}
else if(cost[u][v]==w)
{
num[u][v]++;
num[v][u]++;
} }
Dijkstra(cost,dist,n,0);// wuxiangda bulian memset(cost2,INF,sizeof cost2);
for(int i=0;i<n;i++)
cost2[i][i]=0; for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i!=j)
if(dist[i]-dist[j]==cost[i][j])
{
cost2[j][i]=1;
add(j,i,num[i][j]);
}
}
}
Dijkstra(cost2,dist2,n,0);
printf("%d %d\n",sap(0,n-1,n),m-dist2[n-1]);
}
return 0;
}

hdu 5294 Tricks Device 最短路建图+最小割的更多相关文章

  1. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  2. HDU 5294 Tricks Device 最短路+最大流

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意: 给你个无向图: 1.求最少删除几条边就能破坏节点1到节点n的最短路径, 2.最多能删除 ...

  3. HDU 5294 Tricks Device (最大流+最短路)

    题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...

  4. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  5. HDU 5294 Tricks Device 网络流 最短路

    Tricks Device 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 Description Innocent Wu follows D ...

  6. SPOJ-OPTM Optimal Marks ★★(按位建图 && 最小割)

    [题意]给出一个无向图,每个点有一个标号mark[i],不同点可能有相同的标号.对于一条边(u, v),它的权值定义为mark[u] xor mark[v].现在一些点的标号已定,请决定剩下点的标号, ...

  7. bzoj 1001 平面图转对偶图 最短路求图最小割

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...

  8. hdu 5294 Tricks Device(2015多校第一场第7题)最大流+最短路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294   题意:给你n个墓室,m条路径,一个人在1号墓室(起点),另一个人在n号墓室(终点),起点的那 ...

  9. HDU 5294 Tricks Device (最短路,最大流)

    题意:给一个无向图(连通的),张在第n个点,吴在第1个点,‘吴’只能通过最短路才能到达‘张’,两个问题:(1)张最少毁掉多少条边后,吴不可到达张(2)吴在张毁掉最多多少条边后仍能到达张. 思路:注意是 ...

随机推荐

  1. MySQL数据库中的Date,DateTime,int,TimeStamp和Time类型的对比

    DATETIME 用在你需要同时包含日期和时间信息的值时.MySQL检索并且以'YYYY-MM-DD HH:MM:SS'格式显示DATETIME值,支持的范围是'1000-01-01 00:00:00 ...

  2. Centos7重置root密码的方法(亲测有效)

    CentOS 7的更新还是非常大的,很多平时使用的命令已经变化了,要上手还真要一段时间.比如忘记root密码.在5.6的系统中直接进入单用户模式下,一个passwd命令修改,重启即可.但是在Cento ...

  3. 【cocos2d-js官方文档】十一、cc.path

    概述 该单例是为了方便开发者操作文件路径所设计的.定义为cc.path的目的是为了跟nodejs的path保持一致.里面定义的api也基本跟nodejs的path模块一致,但不全有,今后可能还会继续根 ...

  4. Mysql数据库的安装及配置

    本文转载自http://www.cnblogs.com/xiaoluo501395377/archive/2013/04/07/3003278.html 如果要在Linux上做j2ee开发,首先得搭建 ...

  5. FFT&NTT&多项式相关

    打了FFT 感觉以后多项式不虚了 ~滑稽~ PS 关于详见没写完.... code #include<cmath> #include<cstdio> #include<c ...

  6. Codeforces 788C The Great Mixing(背包问题建模+bitset优化或BFS)

    [题目链接] http://codeforces.com/problemset/problem/788/C [题目大意] 给出一些浓度的饮料,要求调出n/1000浓度的饮料,问最少需要多少升饮料 [题 ...

  7. 【动态规划】bzoj1638 [Usaco2007 Mar]Cow Traffic 奶牛交通

    设f[u]为从度数0到u的路径条数,f2[u]为从u到n的路径条数. ans=max{f[x[i]]*f2[y[i]]}(1<=i<=m). #include<cstdio> ...

  8. 【权值分块】bzoj3570 DZY Loves Physics I

    以下部分来自:http://www.cnblogs.com/zhuohan123/p/3726306.html 此证明有误. DZY系列. 这题首先是几个性质: 1.所有球质量相同,碰撞直接交换速度, ...

  9. 《深入理解Spark-核心思想与源码分析》(三)第三章SparkContext的初始化

    3.1 SparkContext概述 SparkConf负责配置参数,主要通过ConcurrentHaspMap来维护各种Spark的配置属性. class SparkConf(loadDefault ...

  10. IO 流(File)

    1.创建文件 package com.ic.demo01; import java.io.File; import java.io.IOException; public class FileDemo ...