分析:

小Ho:这种简单的谜题就交给我吧!

小Hi:真的没问题么?

<10分钟过去>

小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了。

小Hi:哎,我就知道你会遇到问题。

小Ho:小Hi快来帮帮我!

小Hi:好了,好了。让我们一起来解决这个问题。

<小Hi思考了一下>

小Hi:原来是这样。。。小Ho你仔细观察这个例子:

因为相连的两个数字总是相同的,不妨我们只写一次,那么这个例子可以写成:3-2-4-3-5-1。6个数字刚好有5个间隙,每个间隙两边的数字由恰好对应了一块骨牌。

如果我们将每一个数字看作一个点,每一块骨牌看作一条边。你觉得是怎么样的呢?

小Ho:以这个例子来说的话,就是:

要把所有的骨牌连起来,也就是把所有的边都走一次。咦,这不是欧拉路问题么!

小Hi:没错,这问题其实就是一个欧拉路的问题,不过和上一次不一样的在于,这一次我们要找出一条欧拉路径。

小Ho:那我们应该如何来找一条路径呢?

小Hi:我们还是借用一下上次的例子吧

使用我们上一次证明欧拉路判定的方法,我们在这个例子中找到了2条路径:

L1: 4-5-2-3-6-5
L2: 2-4-1-2

假设我们栈S,记录我们每一次查找路径时的结点顺序。当我们找到L1时,栈S内的情况为:

S: 4 5 2 3 6 5 [Top]

此时我们一步一步出栈并将这些边删除。当我们到节点2时,我们发现节点2刚好是L1与L2的公共节点。并且L2满足走过其他边之后回到了节点2。如果我们在这个地方将L2先走一遍,再继续走L1不就刚好走过了所有边么。

而且在上一次的证明中我们知道,除了L1之外,其他的路径L2、L3...一定都满足起点与终点为同一个点。所以从任意一个公共节点出发一定有一条路径回到这个节点。

由此我们得到了一个算法:

  1. 在原图中找一个L1路径

  2. 从L1的终点往回回溯,依次将每个点出栈。并检查当前点是否还有其他没有经过的边。若存在则以当前点为起点,查找L2,并对L2的节点同样用栈记录重复该算法。

  3. 当L1中的点全部出栈后,算法结束。

在这里我们再来一个有3层的例子:

在这个例子中:

L1: 1-2-6-5-1
L2: 2-3-7-2
L3: 3-4-8-3

第一步时我们将L1压入栈S,同时我们用一个数组Path来记录我们出栈的顺序:

S: [1 2 6 5 1]
Path:

然后出栈到节点2时我们发现了2有其他路径,于是我们把2的另一条路径加入:

S: 1 [2 3 7 2]
Path: 1 5 6

此时L2已经走完,然后再开始弹出元素,直到我们发现3有其他路径,同样压入栈:

S: 1 2 [3 4 8 3]
Path: 1 5 6 2 7

之后依次弹出剩下的元素:

S:
Path: 1 5 6 2 7 3 8 4 3 2 1

此时的Path就正好是我们需要的欧拉路径。

小Ho:原来这样就能求出欧拉路,真是挺巧妙的。

小Hi:而且这个算法在实现时也有很巧妙的方法。因为DFS本身就是一个入栈出栈的过程,所以我们直接利用DFS的性质来实现栈,其伪代码如下:

DFS(u):
While (u存在未被删除的边e(u,v))
删除边e(u,v)
DFS(v)
End
PathSize ← PathSize + 1
Path[ PathSize ] ← u
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std; const int N = ;
int n, m, flag, top, sum, du[N], ans[], map[N][N]; void dfs(int x)
{
ans[++top] = x;
for(int i = ; i <= n; i++)
{
if(map[x][i] >= )
{
map[x][i]--;
map[i][x]--;
dfs(i);
break;
}
}
} void fleury(int x)
{
top = ;
ans[top] = x;
while(top > )
{
int k = ;
for(int i = ; i <= n; i++)//判断是否可扩展
{
if(map[ans[top]][i] >= )//若存在一条从ans[top]出发的边 那么就是可扩展
{k = ; break;}
}
if(k == )//该点x没有其他的边可以先走了(即不可扩展), 那么就输出它
{
printf("%d ", ans[top]);
top--;
}
else if(k == )//如可扩展, 则dfs可扩展的哪条路线
{
top--;//这需要注意
dfs(ans[top+]);
}
}
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
memset(du, , sizeof(du));
memset(map, , sizeof(map)); for(int i = ; i <= m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
map[x][y]++; //记录边, 因为是无向图所以加两条边, 两个点之间可能有多条边
map[y][x]++;
du[x]++;
du[y]++;
}
flag = ; // flag标记开始点。 如果所有点度数全为偶数那就从1开始搜
sum = ;
for(int i = ; i <= n; i++)
{
if(du[i] % == )
{
sum++;
flag = i;// 若有奇数边, 从奇数边开始搜
}
}
if(sum == || sum == )
fleury(flag);
}
return ;
}

转:https://www.cnblogs.com/wd-one/p/4584182.html

 

Fleury算法求欧拉路径的更多相关文章

  1. hiho欧拉路·二 --------- Fleury算法求欧拉路径

    hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...

  2. HihoCoder1181欧拉路(Fleury算法求欧拉路径)

    描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...

  3. Fleury算法 求欧拉回路

    Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...

  4. 【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣

    Fleury算法看这里 http://hihocoder.com/problemset/problem/1181 把每个点看成边,每个横纵坐标看成一个点,得到一个无向图. 如果新图中每个点的度都是偶数 ...

  5. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  6. poj 3565 uva 1411 Ants KM算法求最小权

    由于涉及到实数,一定,一定不能直接等于,一定,一定加一个误差<0.00001,坑死了…… 有两种事物,不难想到用二分图.这里涉及到一个有趣的问题,这个二分图的完美匹配的最小权值和就是答案.为啥呢 ...

  7. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. Dijkstra算法求单源最短路径

    Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...

  9. ZOJ Problem - 2588 Burning Bridges tarjan算法求割边

    题意:求无向图的割边. 思路:tarjan算法求割边,访问到一个点,如果这个点的low值比它的dfn值大,它就是割边,直接ans++(之所以可以直接ans++,是因为他与割点不同,每条边只访问了一遍) ...

随机推荐

  1. ssh -X前设置DISPLAY=localhost:0

    如果是在windows上用XMing做XServer,前面的localhost不能省,否则会被当作一个unix domain socket,而XMing没有实现这个功能,所以会出错 connect / ...

  2. 3、python的传入参数

    转载:https://blog.csdn.net/abc_12366/article/details/79627263 1.位置参数: def func(a, b): print(a+b) func( ...

  3. p2150 [NOI2015]寿司晚宴

    传送门 分析 我们发现对于大于$\sqrt(n)$的数每个数最多只会包含一个 所以我们把每个数按照大质数的大小从小到大排序 我们知道对于一种大质数只能被同一个人取 所以f1表示被A取,f2表示被B取 ...

  4. WebDriverWait等设置等待时间和超时时间

    1.显示等待 等待页面加载完成,找到某个条件发生后再继续执行后续代码,如果超过设置时间检测不到则抛出异常 WebDriverWait(driver, timeout, poll_frequency=0 ...

  5. Django框架 之 跨域请求伪造

    Django框架 之 跨域请求伪造 浏览目录 同源策略与Jsonp 同源策略 Jsonp jQuery对JSONP的实现 CORS 简介 两种请求 同源策略与Jsonp 同源策略 同源策略(Same ...

  6. Servlet请求转发 RequestDispatcher接口.RP

    在Servlet中,利用RequestDispatcher对象,可以将请求转发给另外一个Servlet或JSP页面,甚至是HTML页面,来处理对请求的响应. 一,RequestDispatcher接口 ...

  7. Action Results in MVC

  8. - Unknown tag (c:set).

    <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

  9. 编写高质量代码改善C#程序的157个建议——建议28:理解延迟求值和主动求值之间的区别

    建议28:理解延迟求值和主动求值之间的区别 要理解延迟求值(lazy evaluation)和主动求值(eager evaluation),先看个例子: List<, , , , , , , , ...

  10. C# 高性能对象映射(表达式树实现)

    前言 上篇简单实现了对象映射,针对数组,集合,嵌套类并没有给出实现,这一篇继续完善细节. 开源对象映射类库映射分析 1.AutoMapper 实现原理:主要通过表达式树Api 实现对象映射 优点: . ...