There is a pond with a rectangular shape. The pond is divided into a grid with H rows and W columns of squares. We will denote the square at the i-th row from the top and j-th column from the left by (ij).

Some of the squares in the pond contains a lotus leaf floating on the water. On one of those leaves, S, there is a frog trying to get to another leaf T. The state of square (ij) is given to you by a character aij, as follows:

  • . : A square without a leaf.
  • o : A square with a leaf floating on the water.
  • S : A square with the leaf S.
  • T : A square with the leaf T.

The frog will repeatedly perform the following action to get to the leaf T: "jump to a leaf that is in the same row or the same column as the leaf where the frog is currently located."

Snuke is trying to remove some of the leaves, other than S and T, so that the frog cannot get to the leaf T. Determine whether this objective is achievable. If it is achievable, find the minimum necessary number of leaves to remove.

Constraints

  • 2≤H,W≤100
  • aij is ., o, S or T.
  • There is exactly one S among aij.
  • There is exactly one T among aij.

Input

Input is given from Standard Input in the following format:

H W
a11 a1W
:
aH1 aHW

Output

If the objective is achievable, print the minimum necessary number of leaves to remove. Otherwise, print -1 instead.

Sample Input 1

3 3
S.o
.o.
o.T

Sample Output 1

2

Remove the upper-right and lower-left leaves.

Sample Input 2

3 4
S...
.oo.
...T

Sample Output 2

0

Sample Input 3

4 3
.S.
.o.
.o.
.T.

Sample Output 3

-1

Sample Input 4

10 10
.o...o..o.
....o.....
....oo.oo.
..oooo..o.
....oo....
..o..o....
o..o....So
o....T....
....o.....
........oo

Sample Output 4

5

有意思的网络流题目;
刚开始我想的很直接:按题目建边,但是你会发现这样建边之后复杂度会很高,而且也不现实;
我们考虑将行和列分开;
对于源点,我们将其和该行建边,与该列建边;
同理对于汇点;
对于O这种情况,我们将行和列建边,容量为1;
由于我们要使得S,T分开,所以要求的是最小割,那么就是dinic求一下最大流即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn << 1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].nxt = head[u];
edge[cnt].w = w; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1;
q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
} int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd;
add += tmpadd;
}
return add;
} int ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
}
int H, W;
char ch[103][103]; int getpos(int x, int y) {
return (x - 1)*W + y;
}
int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> H >> W; memset(head, -1, sizeof(head));
for (int i = 1; i <= H; i++)scanf("%s", ch[i] + 1);
int hx = 0, hy = 0, wx = 0, wy = 0;
for (int i = 1; i <= H; i++) {
for (int j = 1; j <= W; j++) {
if (ch[i][j] == 'S') {
hx = i; hy = j;
}
else if (ch[i][j] == 'T') {
wx = i; wy = j;
}
}
}
if (wx == hx || wy == hy) {
cout << -1 << endl; return 0;
}
st = 0; ed = H * W + 1;
for (int i = 1; i <= H; i++) {
for (int j = 1; j <= W; j++) {
if (ch[i][j] == 'S')addedge(st, i, inf), addedge(i, st, 0), addedge(st, j + H, inf), addedge(j + H, st, 0);
if (ch[i][j] == 'T')addedge(i, ed, inf), addedge(ed, i, 0), addedge(j + H, ed, inf), addedge(ed, j + H, 0);
if (ch[i][j] != '.')addedge(i, j + H, 1), addedge(j + H, i, 0), addedge(j + H, i, 1), addedge(i, j + H, 0); }
}
dinic();
if (ans != inf) {
cout << ans << endl; return 0;
}
else cout << -1 << endl;
return 0;
}

AtCoder - 2568 最小割的更多相关文章

  1. Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)

    洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...

  2. Atcoder Regular Contest 125 E - Snack(最小割转化+贪心)

    Preface: 这是生平第一道现场 AC 的 arc E,也生平第一次经历了 performance \(\ge 2800\)​,甚至还生平第一次被 hb 拉到会议里讲题,讲的就是这个题,然鹅比较尬 ...

  3. [题解] Atcoder ARC 142 E Pairing Wizards 最小割

    题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  8. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  9. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

随机推荐

  1. 让IE10等支持classList2.0

    chrome24+, firesfox26+起支持classList2.0,即让它同时添加或删除多个类名, toggle方法支持第2个参数,用于强制添加或删除 var div = document.c ...

  2. Object&nbsp;c&nbsp;基础知识

    文件类型说明:.h 头文件,用于定义类.实例变量及类中的方法等定义信息(interface). .m 源文件,定义方法体,可实现objce-c和c方法(implementation). .mm c++ ...

  3. Neo4j的集群架构

    Neo4j的集群架构 参考资料: 1.http://lib.csdn.net/article/mysql/5742,其中有集群的集中模式master-slave.sharding.多主模式.cassa ...

  4. Aws s3 api

    PUT操作的这个实现将一个对象添加到一个bucket中. 您必须具有对bucket的WRITE权限才能向其中添加对象. Amazon S3从不添加部分对象; 如果您收到成功响应,则Amazon S3将 ...

  5. Linux日志文件分析

    ---恢复内容开始--- 日志保存位置 默认 var/log目录下 主要日志文件 内核及公共消息日志:message 计划任务日志:cron 系统殷桃日志:demsg 邮件系统日志:maillog 用 ...

  6. Codeforces 1137E 凸包

    题意:有一辆火车,初始只有一个车厢,权值为0.有3种操作: 1:在火车头前面加若干辆车 2:在火车车尾加若干辆车 3:每个车的权值加上b + (i - 1) * s,其中i是指这节车厢是从头算的第几个 ...

  7. 475. Heaters 加热范围

    [抄题]: Winter is coming! Your first job during the contest is to design a standard heater with fixed ...

  8. launchpad, jira, github

    一.简介 http://segmentfault.com/q/1010000000165115

  9. 8.INSERT INTO 语句 UPDATE 语句

    1. INSERT INTO 语句 INSERT INTO 语句用于向表格中插入新的行. 语法 INSERT INTO 表名称 VALUES (值1, 值2,....) INSERT INTO Per ...

  10. hdu 4286 (list的reverse时间复杂度为n)

    list 的翻转reverse源码: // 将链表倒置 // 其算法核心是历遍链表, 每次取出一个结点, 并插入到链表起始点 // 历遍完成后链表满足倒置 template <class T, ...