BZOJ 2818 GCD(欧拉函数)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161
题意:gcd(x, y) = 质数, 1 <= x, y <= n
的对数
思路:显然gcd(x, y) = k, 1 <= x, y <= n
的对数等于求(x, y) = 1, 1 <= x, y <= n/k
的对数。所以,枚举每个质数p
,然后求gcd(x, y) = 1, 1 <= x, y <= n/p
的个数。那么问题的关键就是怎么求gcd(x, y) = 1, 1 <= x, y <= n / pi,在[1, y]
和y
互质的数有phi(y)
个,如果我们令x < y
,那么答案就是sigma(phi(y))
。因为x, y
是等价的,所以答案*2,又因为(1, 1)
只有一对,所以-1。最终答案为sigma(sigma(phi(n/prime[i])) * 2 - 1)
。
code:
#include <cstdio>
#include <cstring>
typedef long long LL;
const int MAXN = ; LL phi[MAXN];
int primes[MAXN];
bool is[MAXN];
int cnt; void init(int n)
{
phi[] = 1L;
cnt = ;
memset(is, false, sizeof(is));
for (int i = ; i <= n; ++i) {
if (!is[i]) {
primes[cnt++] = i;
phi[i] = i - ;
}
for (int j = ; j < cnt && i * primes[j] <= n; ++j) {
is[i * primes[j]] = true;
if (i % primes[j] == ) phi[i * primes[j]] = phi[i] * primes[j];
else phi[i * primes[j]] = phi[i] * (primes[j] - );
}
}
} int main()
{
int n;
while (scanf("%d", &n) != EOF) {
init(n);
LL ans = ;
for (int i = ; i <= n; ++i) phi[i] += phi[i - ];
for (int i = ; i < cnt; ++i) {
ans += phi[n / primes[i]] * - ;
}
printf("%lld\n", ans);
}
return ;
}
BZOJ 2818 GCD(欧拉函数)的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- logrotate 日志清理后 rsyslog中断问题
<pre name="code" class="html">随后配置logrotate的配置文件/etc/logrotate.conf,加入下面的内 ...
- 记录一下八款开源 Android 游戏引擎
记录一下八款开源 Android 游戏引擎 虽然android学了点点,然后现在又没学了(我为啥这么没有恒心呢大哭).以后有时间还是要继续学android的,一定要啊!虽然现在没学android游戏编 ...
- openNebula images
- DRP总结
DRP终于结束了,战线有点长了.记得刚开始听说DRP的时候,感觉这个名词很专业,再加上视频一共有300集,顿时感觉这是一个大项目,很正规.很专业的项目.虽然后来知道DRP知识ERP的一个分支,项目规模 ...
- thanks使用注意事项;
router.get('/api/users/search/:key/:page', function(req, res) { if(_.isEmpty(req.params.key)) { res. ...
- javascript 的加载方式
本文总结一下浏览器在 javascript 的加载方式. 关键词:异步加载(async loading),延迟加载(lazy loading),延迟执行(lazy execution),async 属 ...
- JTable只要一双击就进入编辑状态,禁止的方法实现
我用JTable做了一个表格,表格内容只供查看和选择,可每次只要一双击,就进入编辑状态,可是现在我不需要当双击的时候修改表格的内容.这时候需要重载isCellEditable方法. 下面是我的实现的代 ...
- org.apache.solr.client.solrj.impl.HttpSolrServer$RemoteSolrException: Internal Server Error 错误
Solr报错: { "responseHeader": { "status": 500, "QTime": 11 }, "erro ...
- IOS基础:深入理解Objective-c中@class的含义
objective-c中,当一个类使用到另一个类时,并且在类的头文件中需要创建被引用的指针时, 如下面代码: A.h文件 #import "B.h" @interface A : ...
- SGU 149. Computer Network( 树形dp )
题目大意:给N个点,求每个点的与其他点距离最大值 很经典的树形dp...很久前就想写来着...看了陈老师的code才会的...mx[x][0], mx[x][1]分别表示x点子树里最长的2个距离, d ...