The Painter's Partition Problem Part II
(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)
This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.
Solution:
Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:
- The lowest possible value for costmax must be the maximum element in A (name this as lo).
- The highest possible value for costmax must be the entire sum of A (name this as hi).
- As costmax increases, x decreases. The opposite also holds true.
Now, the question translates directly into:
- How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}
The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.
The Painter's Partition Problem Part II的更多相关文章
- The Painter's Partition Problem Part I
(http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...
- 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化
Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...
- poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...
- 2019年牛客多校第二场 F题Partition problem 爆搜
题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...
- 【搜索】Partition problem
题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...
- 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举
https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客多校2 F Partition problem(dfs)
题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...
- 2019牛客多校第二场F Partition problem(暴搜)题解
题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...
随机推荐
- UberX及以上级别车奖励政策(优步北京第一组)
优步北京第一组: 定义为2015年6月1日凌晨前(不含6月1日)激活的司机(以优步后台数据显示为准) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司机( ...
- Android 匿名共享内存C++接口分析
在上一篇Android 匿名共享内存C接口分析中介绍了Android系统的匿名共享内存C语言访问接口,本文在前文的基础上继续介绍Android系统的匿名共享内存提供的C++访问接口.在C++层通过引入 ...
- iOS深入学习 (Block全面分析)
本文翻译自苹果的文档,有删减,也有添加自己的理解部分. 如果有Block语法不懂的,可以参考fuckingblocksyntax,里面对于Block 为了方便对比,下面的代码我假设是写在ViewCon ...
- ceph优秀博文
ceph官方博文: http://ceph.com/community/blog/ rgw根据rgw用户来分pool存放数据 http://cephnotes.ksperis.com/blog/201 ...
- DataReader转泛型
实体类的字段类型要和数据库一致,不然可能会出现错误. /// <summary> /// DataReader转泛型 /// </summary> /// <typepa ...
- 从VS转MyEclipse的15天使用体验
脱离了VS强大的IDE功能之后,转向MyEclipse,发现很大差别,Java的IDE对比VS感觉弱很多,而且树形没有那么好用,Java里面是以包为主,区别与C#的最大就是,高亮提示关键字,这一点Ja ...
- JDK源码学习--String篇(二) 关于String采用final修饰的思考
JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JD ...
- ACM题目:487-3279
题目是这样子的 Description Businesses like to have memorable telephone numbers. One way to make a telephone ...
- Windows下提升进程权限(转)
from: http://www.oschina.net/code/snippet_222150_19533 windows的每个用户登录系统后,系统会产生一个访问令牌(access token) , ...
- BZOJ 2302: [HAOI2011]Problem c( dp )
dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...