(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)

This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.

Solution:

Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:

  • The lowest possible value for costmax must be the maximum element in A (name this as lo).
  • The highest possible value for costmax must be the entire sum of A (name this as hi).
  • As costmax increases, x decreases. The opposite also holds true.

Now, the question translates directly into:

  • How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}

The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.

The Painter's Partition Problem Part II的更多相关文章

  1. The Painter's Partition Problem Part I

    (http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...

  2. 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化

    Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...

  3. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  4. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

  5. 【搜索】Partition problem

    题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...

  6. 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举

    https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...

  7. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  8. 2019牛客多校2 F Partition problem(dfs)

    题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...

  9. 2019牛客多校第二场F Partition problem(暴搜)题解

    题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...

随机推荐

  1. ANDROID SHAPE画圆形背景_ANDROID实现角标布局

    ANDROID SHAPE画圆形背景_ANDROID实现角标布局 <?xml version="1.0" encoding="UTF-8"?> &l ...

  2. Unix/Linux环境C编程入门教程(17) Gentoo LinuxCCPP开发环境搭建

    1. Gentoo Linux是一套通用的.快捷的.完全免费的Linux发行,它面向开发人员和网络职业人员.与其他发行不同的是,Gentoo Linux拥有一套先进的包管理系统叫作Portage.在B ...

  3. nodejs项目中的路由写法

    //两种路由写法,一种封装成函数,返回结果,此种方法可以传递参数, "use strict"; var _ = require("lodash"); var e ...

  4. kafka学习(二)-zookeeper集群搭建

    zookeeper概念 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名 服务等.Zookeeper是h ...

  5. python setattr(),getattr()函数

    setattr(object,name,value): 作用:设置object的名称为name(type:string)的属性的属性值为value,属性name可以是已存在属性也可以是新属性. get ...

  6. cocos2d-x3.6 连连看随机地图实现

    我的博客:http://blog.csdn.net/dawn_moon 这一节来讲地图初始化实现. 连连看地图初始化有非常多实现方式,大概会有下面几种: 每一格的位置随机取图片放上去 随机取图片放到随 ...

  7. rgbdslam_v2安装并使用

    rgbdslam_v2安装并使用 此文档为原创,转载请注明来自CSDN Jasmine_shine的专栏 网址:http://blog.csdn.net/jasmine_shine/article/d ...

  8. iOS开发-object-c之 @[], @{}

    今天看别人代码的时候发现这样的用法 navigationController.viewControllers = @[secondViewController]; 这里用到了@[]. 刚开始不是很明白 ...

  9. C++中operator关键字(重载操作符)

    operator是C++的关键字,它和运算符一起使用,表示一个运算符函数,理解时应将operator=整体上视为一个函数名. 这是C++扩展运算符功能的方法,虽然样子古怪,但也可以理解:一方面要使运算 ...

  10. oracle默认的hr用户使用脚本安装

    1 解压到%ORACLE_HOME%/demo/schema/human_resources/目录下 2 在sys或system用户下运行hr_main.sql脚本(运行命令:@%ORACLE_HOM ...