(http://leetcode.com/2011/04/the-painters-partition-problem-part-ii.html)

This is Part II of the artical: The Painter's Partition Problem. Please read Part I for more background information.

Solution:

Assume that you are assigning continuous section of board to each painter such that its total length must not exceed a predefined maximum, costmax. Then, you are able to find the number of painters that is required, x. Following are some key obervations:

  • The lowest possible value for costmax must be the maximum element in A (name this as lo).
  • The highest possible value for costmax must be the entire sum of A (name this as hi).
  • As costmax increases, x decreases. The opposite also holds true.

Now, the question translates directly into:

  • How do we use binary search to find the minimum of costmax while satifying the condition x=k? The search space will be the range of [lo, hi].
int getMax(int A[], int n)
{
int max = INT_MIN;
for (int i = ; i < n; i++)
{
if (A[i] > max)
max = A[i];
}
return max;
} int getSum(int A[], int n)
{
int total = ;
for (int i = ; i < n; i++)
total += A[i];
return total;
} int getRequiredPainters(int A[], int n, int maxLengthPainter)
{
int total =;
int numPainters = ;
for (int i = ; i < n; i++)
{
total += A[i];
if (total > maxLengthPerPainter)
{
total = A[i];
numPainters++;
}
}
return numPainters;
} int partition(int A[], int n, int k)
{
if (A == NULL || n <= || k <= )
return -; int lo = getMax(A, n);
int hi = getSum(A, n); while (lo < hi)
{
int mid = lo + (hi-lo)/;
int requiredPainters = getRequiredPainter(A, n, mid);
if (requiredPainters <= k)
hi = mid;
else
lo = mid+;
}
return lo;
}

The complexity of this algorithm is O(N log(∑Ai)), which is quite efficient. Furthermore, it does not require any extra space, unlike the DP solution which requires O(kN) space.

The Painter's Partition Problem Part II的更多相关文章

  1. The Painter's Partition Problem Part I

    (http://leetcode.com/2011/04/the-painters-partition-problem.html) You have to paint N boards of leng ...

  2. 2019牛客多校第二场F Partition problem 暴力+复杂度计算+优化

    Partition problem 暴力+复杂度计算+优化 题意 2n个人分成两组.给出一个矩阵,如果ab两个在同一个阵营,那么就可以得到值\(v_{ab}\)求如何分可以取得最大值 (n<14 ...

  3. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  4. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

  5. 【搜索】Partition problem

    题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...

  6. 2019牛客暑期多校训练营(第二场) - F - Partition problem - 枚举

    https://ac.nowcoder.com/acm/contest/882/F 潘哥的代码才卡过去了,自己写的都卡不过去,估计跟评测机有关. #include<bits/stdc++.h&g ...

  7. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  8. 2019牛客多校2 F Partition problem(dfs)

    题意: n<=28个人,分成人数相同的两组,给你2*n*2*n的矩阵,如果(i,j)在不同的组里,竞争力增加v[i][j],问你怎么分配竞争力最 4s 思路: 枚举C(28,14)的状态,更新答 ...

  9. 2019牛客多校第二场F Partition problem(暴搜)题解

    题意:把2n个人分成相同两组,分完之后的价值是val(i, j),其中i属于组1, j属于组2,已知val表,n <= 14 思路:直接dfs暴力分组,新加的价值为当前新加的人与不同组所有人的价 ...

随机推荐

  1. QCA4002/QCA4004 为主流家电和消费电子产品推出低功耗Wi-Fi平台

    美国高通公司日前宣布,其子公司高通创锐讯推出全新芯片系列,这是低功耗Wi-Fi解决方案系列的一部分,可连接组成物联网的各种设备.QCA4002和QCA4004网络平台在芯片上纳入IP堆栈及完整的网络服 ...

  2. linux下各种代理的设置

    http://los-vmm.sc.intel.com/wiki/OpenStack_New_Hire_Guide#Apply_JIRA_account Set up your proxy. The ...

  3. ReactNative实现通知监听事件

    事例1: 只在rn里面发送和接受消息. A界面: import {DeviceEventEmitter} from 'react-native'; //... componentDidMount(){ ...

  4. Dreamweaver中打开CodeSmith文件

    电脑环境:Windows2008+Dreamweaver 8英文版本 问题描述:Dreamweaver中默认打开文档时不支持打开CodeSmith模板文件对应的.cst后缀名文件,截图如下: 解决步骤 ...

  5. 切点算法模板(Cut-vertex)

    下面是一个模板被切割点,也cut_vertex_num[]排列(array)什么是切 - 点记录 Int cut_vertex_num[]; void dfs(int cur,int pa) { in ...

  6. 初识Maven

    今天开始学习怎样使用maven,听起来挺神奇的东西,我们来一步一步的加以剖析. Maven的一些具体的论文的东西,网上很多博客介绍,这里我就不逐一介绍,下面我们从安装maven开始讲解: (1)Mav ...

  7. 利用CSS3的transform 3D制作的立方体旋转效果

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  8. C++的标准模板库(STL)简介

    STL(Standard Template Library,标准模板库)是C++对泛型编程思想的实现,最早是惠普实验室开发的.在被引入C++之前该技术就已经存在了很长的一段时间.后来STL成为ANSI ...

  9. eclipse开发工具Import工程后,工程文件夹上出现黄色感叹号——解决方法

    eclipse开发工具Import工程后,工程文件夹上出现黄色感叹号. 可能是Work目录无效,解决方法:删除Work目录即可,如下图所示: 删除后,如下图:

  10. day6_python学习笔记_chapter8_条件,循环

    1. if elif else 2. 条件表达式:三元操作符: smaller = x if x < y else y   == if x < y : smaller =x  else : ...