UESTC_Infected Land 2015 UESTC Training for Search Algorithm & String<Problem G>
G - Infected Land
Time Limit: 6000/3000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
The earth is under an attack of a deadly virus. Luckily, prompt actions of the Ministry of Health against this emergency successfully confined the spread of the infection within a square grid of areas. Recently, public health specialists found an interesting pattern with regard to the transition of infected areas. At each step in time, every area in the grid changes its infection state according to infection states of its directly (horizontally, vertically, and diagonally) adjacent areas.
- An infected area continues to be infected if it has two or three adjacent infected areas.
- An uninfected area becomes infected if it has exactly three adjacent infected areas.
- An area becomes free of the virus, otherwise.
Your mission is to fight against the virus and disinfect all the areas. The Ministry of Health lets an anti-virus vehicle prototype under your command. The functionality of the vehicle is summarized as follows.
At the beginning of each time step, you move the vehicle to one of the eight adjacent areas. The vehicle is not allowed to move to an infected area (to protect its operators from the virus). It is not allowed to stay in the same area.
Following vehicle motion, all the areas, except for the area where the vehicle is in, change their infection states according to the transition rules described above.
Special functionality of the vehicle protects its area from virus infection even if the area is adjacent to exactly three infected areas. Unfortunately, this virus-protection capability of the vehicle does not last. Once the vehicle leaves the area, depending on the infection states of the adjacent areas, the area can be infected.
The area where the vehicle is in, which is uninfected, has the same effect to its adjacent areas as an infected area as far as the transition rules are concerned. The following series of figures illustrate a sample scenario that successfully achieves the goal.
Initially, your vehicle denoted by @
is found at (1,5) in a 5×5-grid of areas, and you see some infected areas which are denoted by #
's.
Firstly, at the beginning of time step 1, you move your vehicle diagonally to the southwest, that is, to the area (2,4). Note that this vehicle motion was possible because this area was not infected at the start of time step 1.
Following this vehicle motion, infection state of each area changes according to the transition rules. The column "1-end" of the figure illustrates the result of such changes at the end of time step 1. Note that the area (3,3) becomes infected because there were two adjacent infected areas and the vehicle was also in an adjacent area, three areas in total.
In time step 2, you move your vehicle to the west and position it at (2,3).
Then infection states of other areas change. Note that even if your vehicle had exactly three infected adjacent areas (west, southwest, and south), the area that is being visited by the vehicle is not infected. The result of such changes at the end of time step 2 is as depicted in "2-end".
Finally, in time step 3, you move your vehicle to the east. After the change of the infection states, you see that all the areas have become virus free! This completely disinfected situation is the goal. In the scenario we have seen, you have successfully disinfected all the areas in three time steps by commanding the vehicle to move (1) southwest, (2) west, and (3) east.
Your mission is to find the length of the shortest sequence(s) of vehicle motion commands that can successfully disinfect all the areas.
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing a single zero. Each dataset is formatted as sample input.
Here, n is the size of the grid. That means that the grid is comprised of n×n areas. You may assume 1≤n≤5. The rest of the dataset consists of n lines of n letters. Each letter aij specifies the state of the area at the beginning: #
for infection, .
for free of virus, and @
for the initial location of the vehicle. The only character that can appear in a line is #
, .
, or @
. Among n × n
areas, there exists exactly
Output
For each dataset, output the minimum number of time steps that is required to disinfect all the areas. If there exists no motion command sequence that leads to complete disinfection, output−1. The output should not contain any other extra character.
Sample input and output
Sample Input | Sample Output |
---|---|
3 |
0 |
解题报告
这是一道二进制状态压缩搜索题目,地图大小最大是 5*5 ,每个点只有感染和不感染两种状态,用一个int即可存下.
之后考虑判重,因为int太大,其实我们用到的状态并没有那么多,故我们采用哈希表来判重.
唯一需要注意的是医疗车本身也看成感染的点....
#include <iostream>
#include <cstring>
#include <cstdio> using namespace std;
const int MaxHashSize = ;
const int MaxStatusSize = ;
typedef struct status
{
int x,y,val,step;
}; status str;
int n;
int head[MaxHashSize];
int new_next[MaxStatusSize];
status st[MaxStatusSize];
status q[MaxStatusSize];
int dir[][] = {-,,,,,-,,,-,-,,-,-,,,}; int getval(const status &x,bool flag[][] )
{
for(int i = ; i < n ; ++ i)
for(int j = ; j < n ; ++ j)
if ((x.val>> (i*n+j)) & )
flag[i][j] = true;
} int gethashval(int x)
{
return x % MaxHashSize;
} inline bool inmap(int x,int y)
{
if (x >= n || x < || y >= n || y < )
return false;
return true;
} void init_hash()
{
memset(head,-,sizeof(head));
} bool insert(int id)
{
int val = gethashval(st[id].val);
int u = head[val];
while(u != -)
{
if (st[id].val == st[u].val && st[id].x == st[u].x && st[id].y == st[u].y)
return false;
u = new_next[u];
}
new_next[id] = head[val];
head[val] = id;
return true;
} void dump(bool flag[][])
{
for(int i = ; i < n ; ++ i)
{
for(int j = ; j < n ; ++ j)
printf("%d",flag[i][j]);
printf("\n");
}
} int bfs()
{
int front = , rear = ;
st[rear] = str;
insert(rear++);
while(front < rear)
{
status &ns = st[front++];
int x = ns.x , y = ns.y , val = ns.val , step = ns.step;
if ( !(val ^ ( << (x*n+y))))
return step;
bool g[][];
memset(g,false,sizeof(g));
getval(ns,g);
for(int i = ; i < ; ++ i)
{
int newx = x + dir[i][];
int newy = y + dir[i][];
if (!inmap(newx,newy) || g[newx][newy])
continue;
int newval = val;
newval ^= ( << (x*n+y));
newval ^= ( << (newx*n+newy));
st[rear].step = step+;
st[rear].x = newx , st[rear].y = newy;
g[newx][newy] = true;
g[x][y] = false;
for(int j = ; j < n ; ++ j)
for(int k = ; k < n ; ++ k)
{
if (j == newx && k == newy)
continue;
int cot = ;
for(int z = ; z < ; ++ z)
{
int newr = j + dir[z][];
int newt = k + dir[z][];
if (!inmap(newr,newt))
continue;
if (g[newr][newt])
cot++;
}
if (g[j][k])
{
if (cot != && cot != )
newval &= ~(<<(j*n+k));
}
else
{
if (cot == )
newval |= (<<(j*n+k));
}
}
g[x][y] = true;
g[newx][newy] = false;
st[rear].val = newval;
if (insert(rear))
{
rear++;
} }
}
return -;
} char buffer[][]; int main(int argc,char *argv[])
{
while(scanf("%d",&n) && n)
{
for(int i = ; i < n ; ++ i)
scanf("%s",buffer[i]);
init_hash();
str.val = ;
for(int i = ; i < n ; ++ i)
for(int j = ; j < n ; ++ j)
{
if (buffer[i][j] == '@')
str.x = i ,str.y = j,str.val |= (<<(i*n+j));
else if(buffer[i][j] == '#')
str.val |= (<<(i*n+j));
}
str.step = ;
printf("%d\n",bfs());
}
return ;
}
UESTC_Infected Land 2015 UESTC Training for Search Algorithm & String<Problem G>的更多相关文章
- UESTC_韩爷的梦 2015 UESTC Training for Search Algorithm & String<Problem N>
N - 韩爷的梦 Time Limit: 200/100MS (Java/Others) Memory Limit: 1300/1300KB (Java/Others) Submit Stat ...
- UESTC_Palindromic String 2015 UESTC Training for Search Algorithm & String<Problem M>
M - Palindromic String Time Limit: 3000/1000MS (Java/Others) Memory Limit: 128000/128000KB (Java ...
- UESTC_秋实大哥の恋爱物语 2015 UESTC Training for Search Algorithm & String<Problem K>
K - 秋实大哥の恋爱物语 Time Limit: 5000/2000MS (Java/Others) Memory Limit: 32000/32000KB (Java/Others) Su ...
- UESTC_Eight Puzzle 2015 UESTC Training for Search Algorithm & String<Problem F>
F - Eight Puzzle Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) ...
- UESTC_吴队长征婚 2015 UESTC Training for Search Algorithm & String<Problem E>
E - 吴队长征婚 Time Limit: 10000/4000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- UESTC_基爷的中位数 2015 UESTC Training for Search Algorithm & String<Problem D>
D - 基爷的中位数 Time Limit: 5000/3000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- UESTC_基爷与加法等式 2015 UESTC Training for Search Algorithm & String<Problem C>
C - 基爷与加法等式 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Subm ...
- UESTC_邱老师降临小行星 2015 UESTC Training for Search Algorithm & String<Problem B>
B - 邱老师降临小行星 Time Limit: 10000/5000MS (Java/Others) Memory Limit: 65536/65535KB (Java/Others) Su ...
- UESTC_Ferris Wheel String 2015 UESTC Training for Search Algorithm & String<Problem L>
L - Ferris Wheel String Time Limit: 3000/1000MS (Java/Others) Memory Limit: 43000/43000KB (Java/ ...
随机推荐
- python海明距离 - 5IVI4I_I_60Y的日志 - 网易博客
python海明距离 - 5IVI4I_I_60Y的日志 - 网易博客 python海明距离 2009-10-01 09:50:41| 分类: Python | 标签: |举报 |字号大中小 ...
- 【转】基于Qt, TUIO和TSLIB的嵌入式Linux下的多点触摸设计
这个教程描述了在嵌入式linux下使用Qt如何设置一个支持多点触摸和单点触摸的输入系统.这里假定你已经有了对应的驱动程序,驱动可以从触摸屏的厂商那里获得或者使用一个linux 内核源码中已经存在的驱动 ...
- ubuntu14.04 安装 StudioZend12
到官网下载:http://www.zend.com/en/products/studio/downloadsLinux-64位:http://downloads.zend.com/studio-ecl ...
- [android开发之内容更新类APP]二、这几日的结果
android教程即将開始 话说这开了blog之后,就一直在试用自己的app,发现.TM的真的非常不爽,不好用,好吧.本来打算放弃了.只是看到手机里还有还有一个坑,干脆又一次做一个吧. 原来的神回复A ...
- JS 点击复制Copy插件--Zero Clipboard
写博客就是一周工作中遇到哪些问题,一个优点就是能够进行一个总结,另外一个优点就是下次遇到相同的问题即使那你记不住,也能够翻看你的博客攻克了.相同也能够帮到别人遇到与你一样问题的人.或者别人有比你更好的 ...
- [Regular Expressions] Match the Same String Twice
Regular Expression Backreferences provide us a method to match a previously captured pattern a secon ...
- NET基础课--对象的筛选和排序(NET之美)
1.数据量不大的时候取出数据缓存于服务器,然后排序,筛选等基于缓存进行以提高效率. 排序或筛选的方法是使用集合类型提供的,如List<T>.sort() List<T>.Fi ...
- Sublime 学习记录(二) package control 组件
i. 按Ctrl + ` 调出console (如果有QQ输入法会有冲突需要关闭热键) ii. 粘贴以下代码到底部命令行并运行 import urllib.requ ...
- C#实现防拷贝工具示例
思路是用加密程序 对硬盘号,cpu号和MAC号取出字符串并加密 产生一个序列号 每次程序启动后重新产生这个序列号并比对,如果一致则验证通过 using System;using System.Coll ...
- WCF入门教程系列三
一.WCF服务应用程序与WCF服务库 我们在平时开发的过程中常用的项目类型有“WCF 服务应用程序”和“WCF服务库”. WCF服务应用程序,是一个可以执行的程序,它有独立的进程,WCF服务类契约的定 ...