UESTC_Infected Land 2015 UESTC Training for Search Algorithm & String<Problem G>
G - Infected Land
Time Limit: 6000/3000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
The earth is under an attack of a deadly virus. Luckily, prompt actions of the Ministry of Health against this emergency successfully confined the spread of the infection within a square grid of areas. Recently, public health specialists found an interesting pattern with regard to the transition of infected areas. At each step in time, every area in the grid changes its infection state according to infection states of its directly (horizontally, vertically, and diagonally) adjacent areas.
- An infected area continues to be infected if it has two or three adjacent infected areas.
- An uninfected area becomes infected if it has exactly three adjacent infected areas.
- An area becomes free of the virus, otherwise.
Your mission is to fight against the virus and disinfect all the areas. The Ministry of Health lets an anti-virus vehicle prototype under your command. The functionality of the vehicle is summarized as follows.
At the beginning of each time step, you move the vehicle to one of the eight adjacent areas. The vehicle is not allowed to move to an infected area (to protect its operators from the virus). It is not allowed to stay in the same area.
Following vehicle motion, all the areas, except for the area where the vehicle is in, change their infection states according to the transition rules described above.
Special functionality of the vehicle protects its area from virus infection even if the area is adjacent to exactly three infected areas. Unfortunately, this virus-protection capability of the vehicle does not last. Once the vehicle leaves the area, depending on the infection states of the adjacent areas, the area can be infected.
The area where the vehicle is in, which is uninfected, has the same effect to its adjacent areas as an infected area as far as the transition rules are concerned. The following series of figures illustrate a sample scenario that successfully achieves the goal.
Initially, your vehicle denoted by @ is found at (1,5) in a 5×5-grid of areas, and you see some infected areas which are denoted by #'s.

Firstly, at the beginning of time step 1, you move your vehicle diagonally to the southwest, that is, to the area (2,4). Note that this vehicle motion was possible because this area was not infected at the start of time step 1.
Following this vehicle motion, infection state of each area changes according to the transition rules. The column "1-end" of the figure illustrates the result of such changes at the end of time step 1. Note that the area (3,3) becomes infected because there were two adjacent infected areas and the vehicle was also in an adjacent area, three areas in total.
In time step 2, you move your vehicle to the west and position it at (2,3).
Then infection states of other areas change. Note that even if your vehicle had exactly three infected adjacent areas (west, southwest, and south), the area that is being visited by the vehicle is not infected. The result of such changes at the end of time step 2 is as depicted in "2-end".
Finally, in time step 3, you move your vehicle to the east. After the change of the infection states, you see that all the areas have become virus free! This completely disinfected situation is the goal. In the scenario we have seen, you have successfully disinfected all the areas in three time steps by commanding the vehicle to move (1) southwest, (2) west, and (3) east.
Your mission is to find the length of the shortest sequence(s) of vehicle motion commands that can successfully disinfect all the areas.
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing a single zero. Each dataset is formatted as sample input.
Here, n is the size of the grid. That means that the grid is comprised of n×n areas. You may assume 1≤n≤5. The rest of the dataset consists of n lines of n letters. Each letter aij specifies the state of the area at the beginning: # for infection, . for free of virus, and @ for the initial location of the vehicle. The only character that can appear in a line is #, ., or @. Among n × n areas, there exists exactly
Output
For each dataset, output the minimum number of time steps that is required to disinfect all the areas. If there exists no motion command sequence that leads to complete disinfection, output−1. The output should not contain any other extra character.
Sample input and output
| Sample Input | Sample Output |
|---|---|
3 |
0 |
解题报告
这是一道二进制状态压缩搜索题目,地图大小最大是 5*5 ,每个点只有感染和不感染两种状态,用一个int即可存下.
之后考虑判重,因为int太大,其实我们用到的状态并没有那么多,故我们采用哈希表来判重.
唯一需要注意的是医疗车本身也看成感染的点....
#include <iostream>
#include <cstring>
#include <cstdio> using namespace std;
const int MaxHashSize = ;
const int MaxStatusSize = ;
typedef struct status
{
int x,y,val,step;
}; status str;
int n;
int head[MaxHashSize];
int new_next[MaxStatusSize];
status st[MaxStatusSize];
status q[MaxStatusSize];
int dir[][] = {-,,,,,-,,,-,-,,-,-,,,}; int getval(const status &x,bool flag[][] )
{
for(int i = ; i < n ; ++ i)
for(int j = ; j < n ; ++ j)
if ((x.val>> (i*n+j)) & )
flag[i][j] = true;
} int gethashval(int x)
{
return x % MaxHashSize;
} inline bool inmap(int x,int y)
{
if (x >= n || x < || y >= n || y < )
return false;
return true;
} void init_hash()
{
memset(head,-,sizeof(head));
} bool insert(int id)
{
int val = gethashval(st[id].val);
int u = head[val];
while(u != -)
{
if (st[id].val == st[u].val && st[id].x == st[u].x && st[id].y == st[u].y)
return false;
u = new_next[u];
}
new_next[id] = head[val];
head[val] = id;
return true;
} void dump(bool flag[][])
{
for(int i = ; i < n ; ++ i)
{
for(int j = ; j < n ; ++ j)
printf("%d",flag[i][j]);
printf("\n");
}
} int bfs()
{
int front = , rear = ;
st[rear] = str;
insert(rear++);
while(front < rear)
{
status &ns = st[front++];
int x = ns.x , y = ns.y , val = ns.val , step = ns.step;
if ( !(val ^ ( << (x*n+y))))
return step;
bool g[][];
memset(g,false,sizeof(g));
getval(ns,g);
for(int i = ; i < ; ++ i)
{
int newx = x + dir[i][];
int newy = y + dir[i][];
if (!inmap(newx,newy) || g[newx][newy])
continue;
int newval = val;
newval ^= ( << (x*n+y));
newval ^= ( << (newx*n+newy));
st[rear].step = step+;
st[rear].x = newx , st[rear].y = newy;
g[newx][newy] = true;
g[x][y] = false;
for(int j = ; j < n ; ++ j)
for(int k = ; k < n ; ++ k)
{
if (j == newx && k == newy)
continue;
int cot = ;
for(int z = ; z < ; ++ z)
{
int newr = j + dir[z][];
int newt = k + dir[z][];
if (!inmap(newr,newt))
continue;
if (g[newr][newt])
cot++;
}
if (g[j][k])
{
if (cot != && cot != )
newval &= ~(<<(j*n+k));
}
else
{
if (cot == )
newval |= (<<(j*n+k));
}
}
g[x][y] = true;
g[newx][newy] = false;
st[rear].val = newval;
if (insert(rear))
{
rear++;
} }
}
return -;
} char buffer[][]; int main(int argc,char *argv[])
{
while(scanf("%d",&n) && n)
{
for(int i = ; i < n ; ++ i)
scanf("%s",buffer[i]);
init_hash();
str.val = ;
for(int i = ; i < n ; ++ i)
for(int j = ; j < n ; ++ j)
{
if (buffer[i][j] == '@')
str.x = i ,str.y = j,str.val |= (<<(i*n+j));
else if(buffer[i][j] == '#')
str.val |= (<<(i*n+j));
}
str.step = ;
printf("%d\n",bfs());
}
return ;
}
UESTC_Infected Land 2015 UESTC Training for Search Algorithm & String<Problem G>的更多相关文章
- UESTC_韩爷的梦 2015 UESTC Training for Search Algorithm & String<Problem N>
N - 韩爷的梦 Time Limit: 200/100MS (Java/Others) Memory Limit: 1300/1300KB (Java/Others) Submit Stat ...
- UESTC_Palindromic String 2015 UESTC Training for Search Algorithm & String<Problem M>
M - Palindromic String Time Limit: 3000/1000MS (Java/Others) Memory Limit: 128000/128000KB (Java ...
- UESTC_秋实大哥の恋爱物语 2015 UESTC Training for Search Algorithm & String<Problem K>
K - 秋实大哥の恋爱物语 Time Limit: 5000/2000MS (Java/Others) Memory Limit: 32000/32000KB (Java/Others) Su ...
- UESTC_Eight Puzzle 2015 UESTC Training for Search Algorithm & String<Problem F>
F - Eight Puzzle Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) ...
- UESTC_吴队长征婚 2015 UESTC Training for Search Algorithm & String<Problem E>
E - 吴队长征婚 Time Limit: 10000/4000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- UESTC_基爷的中位数 2015 UESTC Training for Search Algorithm & String<Problem D>
D - 基爷的中位数 Time Limit: 5000/3000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- UESTC_基爷与加法等式 2015 UESTC Training for Search Algorithm & String<Problem C>
C - 基爷与加法等式 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Subm ...
- UESTC_邱老师降临小行星 2015 UESTC Training for Search Algorithm & String<Problem B>
B - 邱老师降临小行星 Time Limit: 10000/5000MS (Java/Others) Memory Limit: 65536/65535KB (Java/Others) Su ...
- UESTC_Ferris Wheel String 2015 UESTC Training for Search Algorithm & String<Problem L>
L - Ferris Wheel String Time Limit: 3000/1000MS (Java/Others) Memory Limit: 43000/43000KB (Java/ ...
随机推荐
- Hdu1401-Solitaire(双向bfs)
Solitaire is a game played on a chessboard 8x8. The rows and columns of the chessboard are numbered ...
- vs2008工程配置
一.添加H文件目录 依次点击“项目——配置属性——C/C++——常规”, 在“附加包含目录”中加入H文件所在的文件夹.(即项目所要用到的所有.h文件目录都要加进去) 二.添加LIB目录 1)依次点 ...
- Sort(归并)
Sort 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 You want to processe a sequence of n distinct integers ...
- 百度之星B题(组合数)
Problem B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- 【转】invokeRequired属性和 invoke()方法
C#中禁止跨线程直接访问控件,InvokeRequired是为了解决这个问题而产生的,当一个控件的InvokeRequired属性值为真时,说明有一个创建它以外的线程想访问它. 此时它将会在内部调用n ...
- A10 平板开发二搭建Android开发环境
我是直接在Ubuntu 12.10 64位系统下操作的,搭建Ubuntu开发环境类似,见Ubuntu 10.04开发环境配置.需要注意的是,64位的系统,需要安装支持32位的库(sudo apt-ge ...
- 高性能WEB开发(6) - web性能測试工具推荐
WEB性能測试工具主要分为三种.一种是測试页面资源载入速度的,一种是測试页面载入完成后页面呈现.JS操作速度的,另一种是整体上对页面进行评价分析,以下分别对这些工具进行介绍,假设谁有更好的工具也请一起 ...
- asp.net断点续传技术---下载(转)
断点续传的原理 在了解HTTP断点续传的原理之前,先来说说HTTP协议,HTTP协议是一种基于tcp的简单协议,分为请求和回复两种.请求协议是由客户机(浏览器)向服务器(WEB SERVER)提交请求 ...
- CSS 设计彻底研究(一)(X)HTML与CSS核心基础
第1章 (X)HTML与CSS核心基础 这一章重点介绍了4个方面的问题.先介绍了 HTML和XHTML的发展历程以及需要注意的问题,然后介绍了如何将CSS引入HTML,接着讲解了CSS的各种选择器,及 ...
- mysql中函数DISTINCT,group by,CONCAT及GROUP_CONCAT的使用
一:DISTINCT 在使用mysql时,有时需要查询出某个字段不重复的记录,虽然mysql提供有distinct这个关键字来过滤掉多余的重复记录只保留一条,但往往只用它来返回不重复记录的条数,而不是 ...