(六)6.7 Neurons Networks whitening
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening)
对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降低特征之间的相关性(2)所有特征同方差,白化是需要与平滑与PCA结合的,下边来看如何结合。
对于训练数据{
},找到其所有特征组成的新基U,计算在新基的坐标
,这里
就会消除数据的相关性:

这个数据的协方差矩阵如下:

协方差矩阵对角元素的值为
和
,且非对角线元素取值为0,课件不同纬度的特征之间是不相关的,对应的
和
是不相关的,这便满足白化的第一个要求,降低相关性,下面就要使特征之间同方差(注意是变化后的特征同方差
)
中每个特征 i 的方差为
我们可以直接使用
作为缩放因子来缩放每个特征
。具体地,我们定义白化后的数据
如下:

绘制出
,可以得到:
![]()
这些数据现在的协方差矩阵为单位矩阵
。
是数据经过PCA白化后的版本:
中不同的特征之间不相关并且具有单位方差。
白化与降维相结合。 如果你想要得到经过白化后的数据,并且比初始输入维数更低,可以仅保留
中前
个成分。当我们把PCA白化和正则化结合起来时(在稍后讨论),
中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。
最后要说明的是,使数据的协方差矩阵变为单位矩阵
的方式并不唯一。具体地,如果
是任意正交矩阵,即满足
(说它正交不太严格,
可以是旋转或反射矩阵), 那么
仍然具有单位协方差。在ZCA白化中,令
。定义ZCA白化的结果为:

绘制
,得到:
![]()
可以证明,对所有可能的
,这种旋转使得
尽可能地接近原始输入数据
。
当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部
个维度,不尝试去降低它的维数。
实践中需要实现PCA白化或ZCA白化时,有时一些特征值
在数值上接近于0,这样在缩放步骤时我们除以
将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,我们使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数
:
当
在区间
上时, 一般取值为
。
对图像来说, 这里加上
,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。
(六)6.7 Neurons Networks whitening的更多相关文章
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- CS229 6.7 Neurons Networks whitening
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...
- (六) 6.3 Neurons Networks Gradient Checking
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...
- (六)6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- (六)6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- (六)6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
随机推荐
- 我是如何学习 Linux 的
为何要学习 Linux? 这个问题可能困扰着很多 Linux 初学者和爱好者,其实我也说不上来为何要学习 Linux,可能最实在的理由就是—-Linux 相关工作岗位很多.在“见到” Linux 的第 ...
- Linux之select系统调用_1
SYNOPSIS /* According to POSIX.1-2001 */ #include <sys/select.h> /* According to earlier stand ...
- eclipse下python的selenium自动化环境的搭建
前提:安装python,我用的2.7.8版本,并在环境变量path里设置;E:\Python1.解压setuptools(Python包管理工具),cmd到目录执行python setup.py in ...
- YARN集群维护部分问题汇总
云梯开发人员在云梯Yarn集群的搭建和维护过程中做了许多工作,本文选择这期间部分较为典型的问题,通过对这些问题的分析和解决方案,为大家分享分布式系统问题调查的经验. 调查的问题 1. 2013年初引入 ...
- 【android原生应用】之闹钟应用搭起篇
由于工作原因接触android开发一段时间了,对于开发有了一些了解,于是萌生了搭起android原生应用进行分析和学习的想法.先从闹钟应用开始吧. 1.首先要下载原生应用,原生应用在原生系统里面(当然 ...
- java实现音频转换
这里需要用到第三方 ffmpeg.exe package com.convertaudio; import java.io.File;import java.util.ArrayList;import ...
- iOS开发--自动布局
距离左边的: 距离顶部的: 距离右边的: 距离底部的:
- 针对安卓java入门:数据类型
基本数据类型: 布尔型----boolean字符型----char 用单引号整数型----byte(字节型),short(短整型),int(整型),long(长整型)浮点数型--float(浮点型), ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- C++时间戳转化(涉及GMT CST时区转化)
问题由来 时间戳转换(时间戳:自 1970 年1月1日(00:00:00 )至当前时间的总秒数.) #include <stdio.h> #include <time.h> i ...
