PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening)

对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降低特征之间的相关性(2)所有特征同方差,白化是需要与平滑与PCA结合的,下边来看如何结合。

对于训练数据{},找到其所有特征组成的新基U,计算在新基的坐标 ,这里就会消除数据的相关性:

这个数据的协方差矩阵如下:

 协方差矩阵对角元素的值为  和  ,且非对角线元素取值为0,课件不同纬度的特征之间是不相关的,对应的  和  是不相关的,这便满足白化的第一个要求,降低相关性,下面就要使特征之间同方差(注意是变化后的特征同方差中每个特征 i 的方差为  我们可以直接使用  作为缩放因子来缩放每个特征  。具体地,我们定义白化后的数据  如下:

绘制出  ,可以得到:

这些数据现在的协方差矩阵为单位矩阵  。 是数据经过PCA白化后的版本:  中不同的特征之间不相关并且具有单位方差。

白化与降维相结合。 如果你想要得到经过白化后的数据,并且比初始输入维数更低,可以仅保留  中前  个成分。当我们把PCA白化和正则化结合起来时(在稍后讨论), 中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。

最后要说明的是,使数据的协方差矩阵变为单位矩阵  的方式并不唯一。具体地,如果  是任意正交矩阵,即满足  (说它正交不太严格, 可以是旋转或反射矩阵), 那么  仍然具有单位协方差。在ZCA白化中,令  。定义ZCA白化的结果为:

绘制 ,得到:

可以证明,对所有可能的 ,这种旋转使得  尽可能地接近原始输入数据  。

当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部  个维度,不尝试去降低它的维数。

实践中需要实现PCA白化或ZCA白化时,有时一些特征值  在数值上接近于0,这样在缩放步骤时我们除以  将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,我们使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数 

当  在区间  上时, 一般取值为 

对图像来说, 这里加上  ,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。

(六)6.7 Neurons Networks whitening的更多相关文章

  1. (六) 6.1 Neurons Networks Representation

    面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...

  2. (六) 6.2 Neurons Networks Backpropagation Algorithm

    今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...

  3. CS229 6.7 Neurons Networks whitening

    PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...

  4. (六) 6.3 Neurons Networks Gradient Checking

    BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...

  5. (六)6.10 Neurons Networks implements of softmax regression

    softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...

  6. CS229 6.10 Neurons Networks implements of softmax regression

    softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...

  7. CS229 6.1 Neurons Networks Representation

    面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...

  8. (六)6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

  9. (六)6.16 Neurons Networks linear decoders and its implements

    Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...

随机推荐

  1. iOS多线程的初步研究(四)-- NSTimer

    理解run loop后,才能彻底理解NSTimer的实现原理,也就是说NSTimer实际上依赖run loop实现的. 先看看NSTimer的两个常用方法: + (NSTimer *)timerWit ...

  2. sql 语句的各种连接

    数据表: 1.两种连接表现方式一样 其中 where 条件语句可以省略,当时join 的on 语句不可省略 2.左连接,右连接 左连接:返回左表的所有数据,并根据条件返回左右表的连接结果,如果未匹配到 ...

  3. C# 与C/C++相互调用

    C++调用C#的DLLhttp://www.csharpwin.com/csharpspace/11385r8940.shtml C#调用C/C++动态库必须注意的几个问题http://www.rob ...

  4. linux中的磁盘的MBR记录详解

    在硬盘中,硬盘的0柱面0磁头第一个1扇区称为主引导扇区,也叫主引导记录-MBR(main boot record),其中MBR是以下三个部分组成 1.Bootloader,主引导程序---446个字节 ...

  5. Java:Comparator接口

    public interface Comparator<T> 接口里面的方法 int compare(T o1, T o2) o1 > o2 返回 1 o1 = o2 返回 0 o1 ...

  6. python FTP上传和下载文件

    1. 连接FTP server import ftplib ftp = ftplib.FTP(ftpserver, user, passwd) 等同于 import ftplib ftp = ftpl ...

  7. python_ftplib实现通过FTP下载文件

    1.  Ftplib常用函数介绍 Python中默认安装的ftplib模块定义了FTP类,其中函数有限,可用来实现简单的ftp客户端,用于上传或下载文件,本次主要介绍连接FTP并且进行文件下载功能,可 ...

  8. Java多线程-线程的调度(合并)

    线程的合并的含义就是将几个并行线程的线程合并为一个单线程执行,应用场景是当一个线程必须等待另一个线程执行完毕才能执行时可以使用join方法. join为非静态方法,定义如下:void join(): ...

  9. Linux基础--文件与目录管理

    1.目录与路径 1)特殊目录 .   代表此层目录 ..  代表上一层目录 -   代表前一个工作目录 ~   代表『目前使用者身份』所在的家目录 ~account   代表account这个使用者的 ...

  10. 关于LINUX权限-bash: ./startup.sh: Permission denied

    关于LINUX权限-bash: ./startup.sh: Permission denied <script type="text/javascript"></ ...