getting started with building a ROS simulation platform for Deep Reinforcement Learning
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Learning. The goal of this work is to build a simulation platform that can insert the Deep Reinforcement Learning algorithms as a robot motion planning or navigation module.
I spent all day to position what I should do in this part of work. With an ambiguous goal and a big picture of the whole project, I am almost lost in the information I encountered in knowing about the related fields and knowledge.
In the end of the day, I hope what is now shaped in my mind is enough close to what my boss need. Below are what I believe to explain my work in the future.
Overview of the project
The project finally hopes to determine the robot's motion trajectory in real time by the method of Deep Reinforcement Learning. Given hundreds of different indoor environments the robot is trained to have the ability to move to a specified target without explicitly programmed navigation and obstacle avoidance algorithms.The following paper
The following paper are some related work that I believe could be useful.
Target-driven visual navigation in indoor scenes using deep reinforcement learning
Active Object Localization with Deep Reinforcement Learning
Deep Neural Network for Real-Time Autonomous Indoor Navigation
Autonomous Navigation Planning with ROS
And a git book is quite complete in AI:
https://www.gitbook.com/book/leonardoaraujosantos/artificial-inteligence/details
ROS simulation
Gathering or building virtual indoor worlds
...
Replacing some modules in Navigation stack for Deep Reinforcement Learning algorithms
Navigation stack is a commonly used navigation module in ROS platform and SLAM tasks, of which the architecture is shown below. I believe some modules shown in this diagram can be replaced by DRL algorithm which I still need to dig deeper to determine.

A tutorial might walk through me all the way from building a customised robot to navigating this robot in Gazebo is offered here, which I would follow in the next few days and understand more on the relationship among those modules.
[Tutorial] Getting Starting with Autonomous Robots in ROS via Simulations
...
getting started with building a ROS simulation platform for Deep Reinforcement Learning的更多相关文章
- 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)
Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2015-12-1 声明 ...
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- AI佳作解读系列(三)——深度学习中的合成数据研究
Below are some investigation resources for synthetic datasets: 1. Synthetic datasets vs. real images ...
- Evolutionary approaches towards AI: past, present, and future
Evolutionary approaches towards AI: past, present, and future 2019-10-06 07:28:13 This blog is from: ...
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- (转) Awesome Deep Learning
Awesome Deep Learning Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...
- Top Deep Learning Projects in github
Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by sta ...
随机推荐
- 【python cookbook】【字符串与文本】3.利用shell通配符做字符串匹配
问题:当工作在Linux shell下时,使用常见的通配符模式(即,*.py.Dat[0-9]*.csv等)来对文本做匹配 解决方案:fnmatch模块提供的两个函数fnmatch().fnmatch ...
- java 调用grads 自动批量生成图片
将 -lbcx 命令 后面的4个参数(gs文件名.参数1.参数2.参数3) 放在单引号里面就可以执行了.
- js,replace() 和 正则表达式(regular expression)
repalce() 只能替换字符串中的匹配到的第一个字符或者字符串 正则表达式 替换多个字符或者字符串 注意:一些数字型的字符串使用replace() 时要确保是字符串,而不是数字. 转换方法: ...
- Getting Started with the C# Driver
1.下载 如果下载的.zip文件,只需要解压即可. 如果安装的.msi文件,它会将C#驱动DLL放在C:\Program Files (x86)\MongoDB\CSharp Driver xxx的位 ...
- 本人整理的一些PHP常用函数
<?php //===============================时间日期=============================== //y返回年最后两位,Y年四位数,m月份数字 ...
- [HTML]js实现页面跳转,页面A跳到另一个页面B.以及页面传值(中文)
要实现从一个页面A跳到另一个页面B,js实现就在A的js代码加跳转代码 JS跳转大概有以下几种方式: 第一种:(跳转到b.html)<script language="javascri ...
- hihoCoder 搜索一·24点
题目1 : 搜索一·24点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho都在家待着.在收拾完房间时,小Ho偶然发现了一副扑克,于是两人考虑用这副扑 ...
- hdoj4906 Our happy ending(2014 Multi-University Training Contest 4)
对于一个定长(size = n)的数列a, 若其存在“位置相关”的子集(含空集)使得该子集所有元素之和为k,那么将数列a计数. 其中数列a中任一元素a[i]在[0, l]内自由取值. 数据条件0≤n, ...
- 探索Win32系统之窗口类(转载)
Window Classes in Win32 摘要 本文主要介绍win32系统里窗口类的运做和使用机制,探索一些细节问题,使win32窗口类的信息更加明朗化. 在本文中,"类", ...
- phpcms 01
1 安装完成phpcms,然后打开2 C:\wamp\www\phpcms\templates 复制下面的default 目录,改名为ypzy2014 3 修改ypzy2014文件夹下的config配 ...