Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解
牛顿法

# coding:utf-8
import matplotlib.pyplot as plt
import numpy as np def dataN(length):#生成数据
x = np.ones(shape = (length,3))
y = np.zeros(length)
for i in np.arange(0,length/100,0.02):
x[100*i][0]=1
x[100*i][1]=i
x[100*i][2]=i + 1 + np.random.uniform(0,1.2)
y[100*i]=1
x[100*i+1][0]=1
x[100*i+1][1]=i+0.01
x[100*i+1][2]=i+0.01 + np.random.uniform(0,1.2)
y[100*i+1]=0
return x,y def sigmoid(x): #simoid 函数
return 1.0/(1+np.exp(-x)) def DFP(x,y, iter):#DFP拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Gk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * Gk.dot(grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = delta_k.dot(delta_k.T) / (delta_k.T.dot(y_k))
Qk= Gk.dot(y_k).dot(y_k.T).dot(Gk) / (y_k.T.dot(Gk).dot(y_k)) * (-1)
Gk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def BFGS(x,y, iter):#BFGS拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Bk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * np.linalg.solve(Bk, grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = y_k.dot(y_k.T) / (y_k.T.dot(delta_k))
Qk= Bk.dot(delta_k).dot(delta_k.T).dot(Bk) / (delta_k.T.dot(Bk).dot(delta_k)) * (-1)
Bk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def alphA(x,y,theta,pk): #选取前20次迭代cost最小的alpha
c=float("inf")
t=theta
for k in range(1,200):
a=1.0/k**2
theta = t + a * pk
f= np.sum(np.dot(x.T,sigmoid(np.dot(x,theta))-y))
if abs(f)>c:
break
c=abs(f)
alpha=a
return alpha def newtonMethod(x,y, iter):#牛顿法
m = len(x)
n = len(x[0])
theta = np.zeros(n)
cost=[]
for it in range(iter):
gradientSum = np.zeros(n)
hessianMatSum = np.zeros(shape = (n,n))
for i in range(m):
hypothesis = sigmoid(np.dot(x[i], theta))
loss =hypothesis-y[i]
gradient = loss*x[i]
gradientSum = gradientSum+gradient
hessian=[b*x[i]*(1-hypothesis)*hypothesis for b in x[i]]
hessianMatSum = np.add(hessianMatSum,hessian)
hessianMatInv = np.mat(hessianMatSum).I
for k in range(n):
theta[k] -= np.dot(hessianMatInv[k], gradientSum)
cost.append(np.sum(gradientSum))
return theta,cost def tesT(theta, x, y):#准确率
length=len(x)
count=0
for i in xrange(length):
predict = sigmoid(x[i, :] * np.reshape(theta,(3,1)))[0] > 0.5
if predict == bool(y[i]):
count+= 1
accuracy = float(count)/length
return accuracy def showP(x,y,theta,cost,iter):#作图
plt.figure(1)
plt.plot(range(iter),cost)
plt.figure(2)
color=['or','ob']
for i in xrange(length):
plt.plot(x[i, 1], x[i, 2],color[int(y[i])])
plt.plot([0,length/100],[-theta[0],-theta[0]-theta[1]*length/100]/theta[2])
plt.show()
length=200
iter=5
x,y=dataN(length) theta,cost=BFGS(x,y,iter)
print theta #[[-18.93768161][-16.52178427][ 16.95779981]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=DFP(x,y,iter)
print theta #[[-18.51841028][-16.17880599][ 16.59649161]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=newtonMethod(x,y,iter)
print theta #[-14.49650536 -12.78692552 13.05843361]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta,cost,iter)




Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解的更多相关文章
- 机器学习公开课笔记(3):Logistic回归
Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- 机器学习——logistic回归,鸢尾花数据集预测,数据可视化
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...
- 【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(skl ...
- 【导包】使用Sklearn构建Logistic回归分类器
官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html# ...
- 对线性回归,logistic回归和一般回归的认识
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...
- 线性回归,logistic回归和一般回归
1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...
- 转载 Deep learning:六(regularized logistic回归练习)
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
随机推荐
- hdu1394
//Accepted 292 KB 46 ms //利用线段树求逆序数 //对于每个数看前面比他大的数有多少个,更新这个数的个数 #include <cstdio> #include &l ...
- vc设置按钮文字颜色
设置按钮文字颜色使用 CMFCBUTTON即可 在OnInitDialog函数加入如下内容即可 ((CMFCButton*)GetDlgItem(IDC_MFCBUTTON1))->SetTex ...
- ResultSet结果集判断是否为空
目前亲测过能用的一个方法是: if(rs.next())//当前行有内容 { msg2 = "有这个活动!"; } else //rs对象为空表示查无此活动 { msg2 = &q ...
- Java 解惑:Random 种子的作用、含参与不含参构造函数区别
Random 通常用来作为随机数生成器,它有两个构造方法: Random random = new Random(); Random random2 = new Random(50); 1.不含参构造 ...
- 四则运算<3>单元测试
经过分析图一的结果正确,因为输出到文件是为了打印,不要求在线答题功能,因此为实现答题功能. 经过分析,结果正确,满足了选择要求. 选择这六组测试用例的原因是这六组用例将有无乘数法,有无括号,有无负数, ...
- 请问用Inno_Setup打包文件夹时怎么排除其中一个文件?
请问用Inno_Setup打包文件夹时怎么排除其中一个文件? 该文件夹下有几十个文件,多个文件夹,我要一个个加进去该累死,也容易出问题.不知道能不能实现我要的目的. http://www.jrsoft ...
- SQL备份还原,分离附加
备份.还原.分离.附加 备份:在要备份的数据库上右键点击任务,在选择备份.在打卡的对话框中根据需要选择.注意:备份过期时间不能为0,否则会马上过期.目标可根据需要放在任何位置.最后,点击确定,备份成功 ...
- MVC - Code First Migration Command line
当开发MVC应用程序, 使用.NET Entity Framework的Code First model试, 若是需要将model层对象的改动更新进数据库, 需要使用Package Manager C ...
- String.Format 全汇总
C#格式化数值结果表 字符 说明 示例 输出 C 货币 string.Format("{0:C3}", 2) $2.000 D 十进制 string.Format("{0 ...
- 第一次sprint团队贡献分改
201306114322 邵家文 50分 201306114319 陈俊金 10分 201306114320 李新 10分 201306114324 朱浩龙 10分