牛顿法

  # coding:utf-8
import matplotlib.pyplot as plt
import numpy as np def dataN(length):#生成数据
x = np.ones(shape = (length,3))
y = np.zeros(length)
for i in np.arange(0,length/100,0.02):
x[100*i][0]=1
x[100*i][1]=i
x[100*i][2]=i + 1 + np.random.uniform(0,1.2)
y[100*i]=1
x[100*i+1][0]=1
x[100*i+1][1]=i+0.01
x[100*i+1][2]=i+0.01 + np.random.uniform(0,1.2)
y[100*i+1]=0
return x,y def sigmoid(x): #simoid 函数
return 1.0/(1+np.exp(-x)) def DFP(x,y, iter):#DFP拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Gk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * Gk.dot(grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = delta_k.dot(delta_k.T) / (delta_k.T.dot(y_k))
Qk= Gk.dot(y_k).dot(y_k.T).dot(Gk) / (y_k.T.dot(Gk).dot(y_k)) * (-1)
Gk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def BFGS(x,y, iter):#BFGS拟牛顿法
n = len(x[0])
theta=np.ones((n,1))
y=np.mat(y).T
Bk=np.eye(n,n)
grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
cost=[]
for it in range(iter):
pk = -1 * np.linalg.solve(Bk, grad_last)
rate=alphA(x,y,theta,pk)
theta = theta + rate * pk
grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
delta_k = rate * pk
y_k = (grad - grad_last)
Pk = y_k.dot(y_k.T) / (y_k.T.dot(delta_k))
Qk= Bk.dot(delta_k).dot(delta_k.T).dot(Bk) / (delta_k.T.dot(Bk).dot(delta_k)) * (-1)
Bk += Pk + Qk
grad_last = grad
cost.append(np.sum(grad_last))
return theta,cost def alphA(x,y,theta,pk): #选取前20次迭代cost最小的alpha
c=float("inf")
t=theta
for k in range(1,200):
a=1.0/k**2
theta = t + a * pk
f= np.sum(np.dot(x.T,sigmoid(np.dot(x,theta))-y))
if abs(f)>c:
break
c=abs(f)
alpha=a
return alpha def newtonMethod(x,y, iter):#牛顿法
m = len(x)
n = len(x[0])
theta = np.zeros(n)
cost=[]
for it in range(iter):
gradientSum = np.zeros(n)
hessianMatSum = np.zeros(shape = (n,n))
for i in range(m):
hypothesis = sigmoid(np.dot(x[i], theta))
loss =hypothesis-y[i]
gradient = loss*x[i]
gradientSum = gradientSum+gradient
hessian=[b*x[i]*(1-hypothesis)*hypothesis for b in x[i]]
hessianMatSum = np.add(hessianMatSum,hessian)
hessianMatInv = np.mat(hessianMatSum).I
for k in range(n):
theta[k] -= np.dot(hessianMatInv[k], gradientSum)
cost.append(np.sum(gradientSum))
return theta,cost def tesT(theta, x, y):#准确率
length=len(x)
count=0
for i in xrange(length):
predict = sigmoid(x[i, :] * np.reshape(theta,(3,1)))[0] > 0.5
if predict == bool(y[i]):
count+= 1
accuracy = float(count)/length
return accuracy def showP(x,y,theta,cost,iter):#作图
plt.figure(1)
plt.plot(range(iter),cost)
plt.figure(2)
color=['or','ob']
for i in xrange(length):
plt.plot(x[i, 1], x[i, 2],color[int(y[i])])
plt.plot([0,length/100],[-theta[0],-theta[0]-theta[1]*length/100]/theta[2])
plt.show()
length=200
iter=5
x,y=dataN(length) theta,cost=BFGS(x,y,iter)
print theta #[[-18.93768161][-16.52178427][ 16.95779981]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=DFP(x,y,iter)
print theta #[[-18.51841028][-16.17880599][ 16.59649161]]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta.getA(),cost,iter) theta,cost=newtonMethod(x,y,iter)
print theta #[-14.49650536 -12.78692552 13.05843361]
print tesT(theta, np.mat(x), y) #0.935
showP(x,y,theta,cost,iter)

Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解的更多相关文章

  1. 机器学习公开课笔记(3):Logistic回归

    Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...

  2. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  3. 机器学习——logistic回归,鸢尾花数据集预测,数据可视化

    0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...

  4. 【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)

    目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(skl ...

  5. 【导包】使用Sklearn构建Logistic回归分类器

    官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html# ...

  6. 对线性回归,logistic回归和一般回归的认识

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...

  7. 线性回归,logistic回归和一般回归

    1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...

  8. 转载 Deep learning:六(regularized logistic回归练习)

    前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...

  9. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

随机推荐

  1. EAX、ECX、EDX、EBX寄存器的作用

    注意:在计算加法时,实在32位的累加器上进行,并注意类型之间的转换,数据的截取问题 一般寄存器:AX.BX.CX.DXAX:累积暂存器,BX:基底暂存器,CX:计数暂存器,DX:资料暂存器 索引暂存器 ...

  2. 《JAVA学习笔记 (final关键字)》

    [14-9]面向对象-final关键字 /* 继承的弊端,打破封装性. 不让其他类继承该类,就不会有重写. 怎么能实现呢?通过Java中的一个关键子来实现,final(最终化). [final关键字] ...

  3. Html.ActionLink , Url.Action

    也来总结一下 以后省的忘了 都是从controller中获取到action名字返回 html.actionlink 返回的是带<a> 标签的超链接 url.action 是返回正常cont ...

  4. 搭建linux系统环境

    1.安装centos6.4 x86,选择的是Desktop模式2.配置centos a关闭NetwrokManager(chkconfig NetworkManager off) b开机启动netwo ...

  5. Web前端的学习介绍(截止今天还有Bootstrap没有学,要腾点时间解决掉)

    Web前端的学习分为以下几个阶段,具体的学习路线图如图所示. 第一阶段——HTML的学习 超文本标记语言(HyperText Mark-up Language 简称HTML)是一个网页的骨架,无论是静 ...

  6. 前端开发者应该知道的 CSS 小技巧

    一些小技巧让你的CSS技术更专业 使用:not()去除导航上不需要的边框 为body添加行高 垂直居中任何元素 逗号分离的列表 使用负nth-child选择元素 使用SVG图标 文本显示优化 在纯CS ...

  7. 文件操作I

    <html> <head> <meta charset="utf-8"> </head> <body> <?php ...

  8. win7下环境搭建

    1.Python下载 https://www.python.org/downloads/windows/ 选择需要安装的版本,我偷懒装的可执行文件. 下载之后双击安装就OK啦,安装过程中有一项偷懒的选 ...

  9. Drools规则文件结构说明

    一.规则文件构成 package(规则文件所在包) import(导入java包) global(规则文件中的"全局变量") function(函数) query(查找) rule ...

  10. div+css文字垂直居中 解决左侧头像右侧姓名,姓名多换行后相对于头像仍居中显示

    在说到这个问题的时候,也许有人会问CSS中不是有vertical-align属性来设置垂直居中的吗?即使是某些浏览器不支持我只需做少许的CSS Hack技术就可以啊!所以在这里我还要啰嗦两句,CSS中 ...