计算系数(noip2011)
【问题描述】
给定一个多项式(ax + by)^k,请求出多项式展开后(x^n)*(y^m)项的系数。
【输入】
输入文件名为 factor.in。
共一行,包含 5 个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。
【输出】
输出文件名为 factor.out。
输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。
【输入输出样例】
|
factor.in |
factor.out |
|
1 1 3 1 2 |
3 |
【数据范围】
对于 30%的数据,有0≤k≤10;
对于 50%的数据,有a = 1,b = 1;
对于 100%的数据,有0≤k≤1,000,0≤n, m≤k,且n + m = k,0≤a,b≤1,000,000。
分析:
首先弄懂样例,然后从简单数据入手找规律。
(a*x+b*y)^2=(a*x)^2+2*a*b*x*y+(b*y)^2
(a*x+b*y)^3=(a*x)^3+3*(a^2)*b*(x^2)*y+3*a*(b^2)*x*(y^2)+(b*y)^3
(a*x+b*y)^4=(a*x)^4+4*(a^3)*b*(x^3)*y+6*(a^2)*(b^2)*(x^2)*(y^2)+4*a*(b^3)*x*(y^3)+(b*y)^3
(a*x+b*y)^5=......
通过这几个简单的公式可以得出(x^n)*(y^m)的系数为t*(a^n)*(b^m),t值如下所示:
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
.........
这不就是杨辉三角么(当然也是所有的组合情况C(k,n))
若f[i,j]表示(a*x+b*y)^i展开后的系数
(a^n)*(b^m)的系数为f[i,i-n+1]
又
f[i,j]:=f[i-1,j-1]+f[i-1,j];
结果:ans=f[k,k-n+1]*(a^n)*(b^m)
由于题目要求输出对10007 取模后的结果,则有:
f[i,j]:=((f[i-1,j-1] mod 10007)+(f[i-1,j]mod 10007))mod 10007;
a^n=((a^(N-1))mod 10007*a)mod 10007
b^m=((b^(m-1))mod 10007*b)mod 10007
(a^n可以边乘边取余数的方法做,也可用快速幂)。
注意:边界条件k=0,k=n等。
const
maxk=;
var
a,b,k,n,m,i,j,ans:longint;
f:array[..maxk,..maxk] of longint;
begin
readln(a,b,k,n,m);
fillchar(f,sizeof(f),);
f[,]:=; f[,]:=;
for i:= to k do begin f[i,]:=; f[i,i+]:=; end;
for i:= to k do
for j:= to i do
f[i,j]:=(f[i-,j-]+f[i-,j] ) mod ;
ans:=;
for i:= to n do ans:=(ans *a) mod ;
for i:= to m do ans :=(ans *b)mod ;
ans:=(f[k,k-n+]*ans) mod ;
if k= then writeln() else writeln(ans);
end.
计算系数(noip2011)的更多相关文章
- 计算系数(NOIP2011提高LuoguP1313)
一道数论好题,知识点涉及扩展欧几里得,快速幂,逆元,二项式定理,模运算,组合数等. (别问为啥打了快速幂不用费马小求逆元...我就练习下扩欧) (数据就应该再加大些卡掉n^2递推求组合数的) #inc ...
- NOIP2011 day2 第一题 计算系数
计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...
- 一本通1648【例 1】「NOIP2011」计算系数
1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...
- 题解 【NOIP2011】计算系数
[NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...
- 洛谷P1313 [NOIP2011提高组Day2T1]计算系数
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)
计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...
- NOIP2011 计算系数
1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...
- luoguP1313 计算系数 题解(NOIP2011)
P1313 计算系数 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cm ...
- 【NOIP2011提高组】计算系数
计算系数 算法:真·滚动数组模拟!!! 马上CSP/S了,这是远在今年暑假前的一天的校内考试题中的一道.当时做的时候不会组合数,不会二项式定理,不会DP,不会……只知道应该n*n的空间存一个杨辉三角形 ...
随机推荐
- Working with Data » 使用Visual Studio开发ASP.NET Core MVC and Entity Framework Core初学者教程
原文地址:https://docs.asp.net/en/latest/data/ef-mvc/intro.html The Contoso University sample web applica ...
- Wifi-Direct
参考链接:http://developer.android.com/guide/topics/connectivity/wifip2p.html 国内镜像开发文档:http://wear.techbr ...
- spring3-hibernate3整合
Spring与Hibernate整合关键点: 1) Hibernate的SessionFactory对象交给Spring创建: 2) hibernate事务交给spring的声明式事务管理. SH整合 ...
- XPath语法 在C#中使用XPath示例 【转http://www.cnblogs.com/yukaizhao/archive/2011/07/25/xpath.html】非常详细的文章
XPath语法 在C#中使用XPath示例 XPath可以快速定位到Xml中的节点或者属性.XPath语法很简单,但是强大够用,它也是使用xslt的基础知识. 示例Xml: <?xml ve ...
- hdu----(2222)Keywords Search(ac自动机)
Keywords Search Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- 最小生成树练习3(普里姆算法Prim)
风萧萧兮易水寒,壮士要去敲代码.本女子开学后再敲了.. poj1258 Agri-Net(最小生成树)水题. #include<cstdio> #include<cstring> ...
- js 正则表达式 查找
<script>var str='<p><img style="width: 140px; height: 105px;" alt="&qu ...
- struts2视频学习笔记 09-10(struts2处理流程,指定多个struts配置文件)
课时9 Struts2的处理流程 StrutsPrepareAndExecuteFilter是Struts 2框架的核心控制器,它负责拦截由<url-pattern>/*</url- ...
- ASP.NET文章目录导航
ASP.NET文章目录导航 ASP.NET-[读书笔记]-原创:ASP.Net状态管理读书笔记--思维导图 (2013-12-25 10:13) ASP.NET-[潜在危险]-从客户端中检测到有潜在危 ...