BZOJ3503: [Cqoi2014]和谐矩阵
题解:
如果第一行的数知道了,我们就可以推出其他行的数。
那么如何判断第一行的数的一种填法是否合法呢?很简单,我们递推出m+1行的数,当且仅当这一行都是0时满足题意。
那么,我们就有了一种想法。
直接把m+1行的每个数用x[1..n]表示出来,这一定是个系数只为0/1的式子。然后让这个异或值=0,就可以解异或方程组了。
系数怎么推呢?
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
然后解方程就可以了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 50+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m;
ll a[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
inline void gauss()
{
for1(i,n)
{
int k=i;
while(k<=n&&!a[k][i])k++;
if(k>n)continue;
for2(j,i,n+)swap(a[i][j],a[k][j]);
for2(j,i+,n)if(a[j][i])
for2(k,i,n+)
a[j][k]^=a[i][k];
}
for3(i,n,)
{
c[][i]=a[i][n+];
if(!a[i][i]){c[][i]=;continue;}
for2(j,i+,n)if(a[i][j])c[][i]^=c[][j];
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
m=read();n=read();
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
for1(i,n)
for1(j,n)
a[i][j]=b[m+][i]>>(j-)&;
gauss();
for2(i,,m)
for1(j,n)
c[i][j]=c[i-][j]^c[i-][j-]^c[i-][j+]^c[i-][j];
for1(i,m){for1(j,n-)printf("%d ",c[i][j]);printf("%d\n",c[i][n]);}
return ;
}
BZOJ3503: [Cqoi2014]和谐矩阵的更多相关文章
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- 3503: [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...
- P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- SDUST 软件工程2016-作业4-A 百钱买鸡问题
解决百钱买鸡问题原本并不困难,关键的是这道题对其进行了升级,测试数据太大,传统的解法,像三重循环,二重循环都会导致超时. 这道题正确的解法应该是结合数学方程进行化简,将其转化为1层循环: x+y+z= ...
- [Redis] RDB & AOF
http://my.oschina.net/davehe/blog/174662 rdb - 存在dump.rdb 的二进制文件中 dump 整个db, 数据多的时候,不合适频繁保存,保存的时间间隔应 ...
- [原]打造Python开发环境之Python环境
人生苦短,我用Python 一.升级到python2.7 开发环境的系统是centos 6.0, 默认的python版本是2.6.6, 由于线上环境是python2.7,为了防止版本差异产生的问题,所 ...
- c语言学习的第6天
#include <stdio.h> int main() { int x=100; if(x==0) { printf("x等于0\n"); printf(" ...
- 将Tab栏居中的方法
原始tab: 居中后的tab(边缘效果是截图的问题): 改变方法如下: 找到Android SlidingTabLayout源代码,在Android SlidingTabLayout源代码中有一个方法 ...
- ASP.NET MVC5学习笔记之Filter提供体系
前面我们介绍了Filter的基本使用,但各种Filter要在合适的时机运行起来,需要预先准备好,现在看看ASP.NET MVC框架是怎么做的. 一.Filter集合 在ControlerActionI ...
- RSA的密钥把JAVA格式转换成C#的格式
RSA算法在C#与JAVA之前的交互 在JAVA生成一对RSA私钥和公钥的时候,是以下的形式给到C#去调用: string publickey = @"MIGfMA0GCSqGSIb4DQE ...
- python中列表和元组的使用方法和区别
一.二者区别 列表: 1.可以增加列表内容 append 2.可以统计某个列表段在整个列表中出现的次数 count 3.可以插入一个字符串,并把整个字符串的每个字母拆分当作一个列表段追加到列表 ...
- 分享O'Reilly最新C语言指针数据
1.推荐书名 Understanding.and.Using.C.Pointers.pdf 2. 本书目录 Table of Content Chapter 1. Introduction Chapt ...
- iFreeThinking - 记录生活,分享思考
http://www.ifreethinking.com iFreeThinking.com 是一个非营利性个人博客网站.开于 2014 年,博客主要记录分享一些思考和感悟. 文章列表:http:// ...