BZOJ3503: [Cqoi2014]和谐矩阵
题解:
如果第一行的数知道了,我们就可以推出其他行的数。
那么如何判断第一行的数的一种填法是否合法呢?很简单,我们递推出m+1行的数,当且仅当这一行都是0时满足题意。
那么,我们就有了一种想法。
直接把m+1行的每个数用x[1..n]表示出来,这一定是个系数只为0/1的式子。然后让这个异或值=0,就可以解异或方程组了。
系数怎么推呢?
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
然后解方程就可以了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 50+5
#define maxm 100000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m;
ll a[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
inline void gauss()
{
for1(i,n)
{
int k=i;
while(k<=n&&!a[k][i])k++;
if(k>n)continue;
for2(j,i,n+)swap(a[i][j],a[k][j]);
for2(j,i+,n)if(a[j][i])
for2(k,i,n+)
a[j][k]^=a[i][k];
}
for3(i,n,)
{
c[][i]=a[i][n+];
if(!a[i][i]){c[][i]=;continue;}
for2(j,i+,n)if(a[i][j])c[][i]^=c[][j];
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
m=read();n=read();
for1(i,n)b[][i]=(ll)<<i-;
for2(i,,m+)
for1(j,n)
b[i][j]=b[i-][j]^b[i-][j-]^b[i-][j+]^b[i-][j];
for1(i,n)
for1(j,n)
a[i][j]=b[m+][i]>>(j-)&;
gauss();
for2(i,,m)
for1(j,n)
c[i][j]=c[i-][j]^c[i-][j-]^c[i-][j+]^c[i-][j];
for1(i,m){for1(j,n-)printf("%d ",c[i][j]);printf("%d\n",c[i][n]);}
return ;
}
BZOJ3503: [Cqoi2014]和谐矩阵的更多相关文章
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- 3503: [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...
- P3164 [CQOI2014]和谐矩阵
P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- Jquery调用Webservice传递Json数组
Jquery由于提供的$.ajax强大方法,使得其调用webservice实现异步变得简单起来,可以在页面上传递Json字符串到Webservice中,Webservice方法进行业务处理后,返回Js ...
- seeting菜单界面形成--优化
本文是上一篇文章的优化版: 上文链接地址:http://www.cnblogs.com/zzw1994/p/5016864.html 上文中有很多方法都是过时,并且效率不是很高,主要对JAVA代码进行 ...
- 通过messenger实现activity与service的相互通信
布局: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:to ...
- CentOS下MySQL忘记root密码解决方法【转载】
1.首先确认服务器出于安全的状态,也就是没有人能够任意地连接MySQL数据库. 因为在重新设置MySQL的root密码的期间,MySQL数据库完全出于没有密码保护的 状态下,其他的用户也可以任意地登录 ...
- GUID,UUID
<? class System { function currentTimeMillis() { list($usec, $sec) = explode(" ",microt ...
- DevExpress 重编译 替换强命名 修改源码
本文以DevExpress 11.1.8举例 必须满足几个条件 1. 必须有DXperience相应版本的全部源代码SourceCode.把全部源代码复制到X:\Program Files\DevEx ...
- 共享内存 share pool (2):BUCKET /FREE LISTS /RESERVED FREE LISTS /UNPINNED RECREATABLE CHUNKS (lru first)
相关概念 BUCKET :每个bucket上挂有一个 chunk list.同一个BUCKET中的chunk在物理地址上是不一定相邻的 FREE LISTS:按bucket划分,共有255个,buck ...
- 史上最简单的个人移动APP开发入门--jQuery Mobile版跨平台APP开发
书是人类进步的阶梯. ——高尔基 习大大要求新新人类要有中国梦,鼓励大学生们一毕业就创业.那最好的创业途径是什么呢?就是APP.<构建跨平台APP-jQuery Mobile移动应用实战> ...
- 编译mgiza的准备
cmake之前需要首先设置环境变量: export BOOST_LIBRARYDIR=$BOOST_ROOT/lib64export BOOST_ROOT=/home/noah/boost_1_57_ ...
- Spring IOC 方式结合TESTGN测试用例,测试简单java的命令模式
java命令模式: 可以命令("请求")封装成一个对象,一个命令对象通过在特定的接收着上绑定一组动作来封装一个请求.命令对象直接把执行动作和接收者包进对象中,只对外暴露出执行方法的 ...