2693: jzptab

Description

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1

4 5

Sample Output

122

HINT
T <= 10000

N, M<=10000000

 
 
【分析】
  bzoj2154的进化版!多组。。
  根据bzoj2154的推导我们有:
  
 对于这个把它放入线性筛里面预处理就好了。
 
 
  首先证明f[n]=∑i*mu[i](i|n)为积性函数:
  设函数g[n]=n*mu[n],那么f=1*g,1和g都是积性函数,所以f也是积性函数。
 
  线性筛的时候,当i%prime[j]!=0 由积性函数得,f[i*prime[j]]=f[i]*f[prime[j]]
  当i%prime[j]==0时,若再加入prime[j],mu值为0,所以对答案没有影响。即f[i*prime[j]]=f[i]。
  想这里的时候还是有思维局限,要记住当有一个质因子质数大于1时,mu值就为0了,这个特点前面一题也用到过!!
 
  还有一个不是很懂的地方就是为什么每次加进去时都要MOD成正数,表示不知道化简之后为什么不能加一个负数进去~~导致WA很久~~
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Mod 100000009
#define Maxn 10000010
#define LL long long LL mu[Maxn],pri[Maxn],g[Maxn],h[Maxn],pl;
bool q[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;} void get_mu(LL mx)
{
pl=;
memset(q,,sizeof(q));
mu[]=;g[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;
g[i]=+i*mu[i];
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=,g[i*pri[j]]=g[i];
else mu[i*pri[j]]=-mu[i],g[i*pri[j]]=(g[i]*g[pri[j]])%Mod;
if(i%pri[j]==) break;
}
}
for(LL i=;i<=mx;i++) g[i]=(i*g[i])%Mod;
h[]=g[];
for(LL i=;i<=mx;i++) h[i]=(h[i-]+g[i])%Mod;
} LL get_sum(LL x,LL y)
{
return ( ( ((x+)*x/)%Mod )*( ((y+)*y/)%Mod ) )%Mod;
} LL get_ans(LL n,LL m)
{
LL ans=; LL sq=(LL)ceil(sqrt((double)m));
for(LL i=;i<=mymin(sq,n);i++)
{
ans=(ans+(g[i]%Mod+Mod)%Mod*get_sum(n/i,m/i) )%Mod;
} for(LL i=sq+;i<=n;)
{
LL x=n/i,y=m/i;
LL r1=n/x+,r2=m/y+;
LL r=mymin(r1,r2);
if(r>m+) r=m+;
// if((((h[r-1]-h[i-1])%Mod+Mod)%Mod)<0) while(1);
ans=( ans+(((h[r-]-h[i-])%Mod+Mod)%Mod)*get_sum(x,y) )%Mod;
i=r;
}
return ans;
} int main()
{
int T;
T=;
scanf("%d",&T);
get_mu(); while(T--)
{
LL n,m,t;
scanf("%lld%lld",&n,&m);
if(n>m) t=n,n=m,m=t; LL ans=get_ans(n,m); printf("%lld\n",ans);
}
return ;
}

[BZOJ 2693]

 
 
2016-08-30 16:49:26
 
 
 
 

【BZOJ 2693】jzptab(莫比乌斯+分块)的更多相关文章

  1. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  2. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  3. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  7. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  8. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  9. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

  10. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

随机推荐

  1. BFM1

    BFM应该描述的是具有某种具体功能的电路.比如说,你的待测电路是一个智能卡,那他的BFM就是读卡器:那你就要根据协议,在BFM中描述出读卡器的具体行为. 写BFM就类似于写testbench了.BFM ...

  2. hdu 1587 Flowers

    Flowers Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. css-01

    1.CSS:级联样式表,设置页面的样式 2.css基本的语法:     属性:值; 3.CSS的引入   |-1.元素内容的引入:内联样式       <元素名 style="属性:值 ...

  4. mysql查询练习

    mysql> #查询每个栏目最贵的商品 mysql> select goods_id,shop_price,cat_id from (select goods_id,shop_price, ...

  5. KP 佛学禅语

    1.人之所以痛苦,在于追求错误的东西. 2.如果你不给自己烦恼,别人也永远不可能给你烦恼.因为你自己的内心,你放不下. 3.你永远要感谢给你逆境的众生. 4.你永远要宽恕众生,不论他有多坏,甚至他伤害 ...

  6. /etc/resolv.conf文件详解

    大家好,今天51开源给大家介绍一个在配置文件,那就是/etc/resolv.conf.很多网友对此文件的用处不太了解.其实并不复杂,它是DNS客户机配置文件,用于设置DNS服务器的IP地址及DNS域名 ...

  7. js 实现图片旋转角度

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. VMware Workstation不能启用虚拟设备floppy0由于灭有相应的有效设备在主机上. 你要尝试在每次打开虚拟机电源时连接此虚拟设备?

    编辑虚拟机的硬件,把软盘取消掉,floppy的提示就没有了

  9. 迭代map方法

    Map<String, String> map=new HashMap<String,String>();map.put("1", "one&qu ...

  10. UVA 11732 strcmp() Anyone?(Trie的性质)

    strcmp() Anyone? strcmp() is a library function in C/C++ which compares two strings. It takes two st ...