汉洛塔是古印度神话产生的智力玩具,他的玩法是,有三个柱子分别为A,B,C,A柱上面有n个盘子上面小下面大堆叠放在一起,现在要求激将A柱上的盘子全部移到C柱上面,并且一次只能移动一个盘子,必须是小盘在大盘的上面。现在要求用C语言递归来完成,并统计递归调用的次数。

这个实现是递归的强大功能的体现,废话不多说,请看源码:

#include<stdio.h>
void move(int n,int *cnt,char A,char B,char C)
{
if(n==1)
{
printf("%d号盘:%c-->%c\n",n,A,C);
//如果还剩一个盘或者只有一个盘时,直接将1号盘移到C柱
(*cnt)++;
//递归调用次数加1
} else
{
move(n-1,cnt,A,C,B);
//将n-1个盘从A柱上借助于C柱移到B柱上
printf("%d号盘:%c-->%c\n",n ,A,C);
//当将n-1个盘移到B柱成功时直接将A柱上的盘移到C柱
move(n-1,cnt,B,A,C);
//再次将n-1个盘从B柱上借助于A柱移到C柱上
(*cnt)++;
//递归调用次数加1
} }
int main(void)
{
int h;
int cnt = 0;
printf("\ninput number:\n");
scanf("%d",&h);
printf("the step to moving %2d diskes:\n",h);
move(h,&cnt,'A','B','C');
printf("一共执行了%d次!\n",cnt);
}

我这里给出的源码是极为精简的,但是很健壮!现在分析如下:

首先,梳理一下思路,要用递归实现的前提是,问题规模更大的解决依赖于问题规模更小的解决,也就是说要想移动n个盘子,必须先移动n-1个盘子,这时递归的基础。那么现在有三个柱子,该如何移动呢?比较好的解决方案是:可以将n-1个盘子以C柱为中转站移动到B柱上,这样A柱上最下面的那个盘子就可自由地移动到C柱上了,然后在将n-1个盘子以A柱为中转站移动到C柱上,这就是上面代码核心的解决算法。

看到这里,很多人又有疑问,感觉这个解决方案,似乎理解了又似乎没理解,这时怎么回事?其实这就是递归的理解问题。在这个问题中,n个盘子会始终按照这个算法执行,当执行到n==1的时候一下子就返回,层层回叠返回最终的结果。

这个里面还有一个有意思的问题,就是递归调用的参数是个变量,比如说

move(n-1,cnt,A,C,B);

这一步中,他将C给了B,B给了C,这是个互换,又因为当n==1的时候不会再递归调用,故当盘子数为奇数时两个数会互换,而是偶数时就不会互换,举个例子如下:

#include <iostream>
using namespace std;
void swap (int n,int a,int b)
{
if (n == 1)
{
cout << "a="<< a << "\tb=" << b << endl;
return;
}
else
{
swap(n-1,b,a);
}
}
int main (void)
{
int a = 1;
int b = 2;
swap(3,a,b);
}

在这个例子中,当main函数中个传参的第一参数是奇数时a,b就不会互换,偶数时就会互换,这也是个互换数字的算法呢!

例外附注一下,汉洛塔的递归调用的个数是2的n次方减1,故大家在试的时候,不要输入太大的n值,以免在DOS下看不全结果!!

汉洛塔递归实现的思考(C语言)的更多相关文章

  1. 数据结构--汉诺塔递归Java实现

    /*汉诺塔递归 * 1.将编号0-N-1个圆盘,从A塔座移动到B上面 * 2.将编号N的1个圆盘,从A移动到C上面 * 3.最后将B上面的N-1个圆盘移动到C上面 * 注意:盘子的编号从上到下1-N ...

  2. 化繁为简 经典的汉诺塔递归问题 in Java

    问题描述   在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑 ...

  3. UVA 10795 A Different Task(汉诺塔 递归))

    A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...

  4. C++汉诺塔递归实现

    程序背景: 汉诺塔(Tower of Hanoi)又称河内塔,问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命 ...

  5. C++基础算法学习——汉洛塔问题

    汉诺塔问题古代有一个梵塔,塔内有三个座A.B.C,A座上有64个盘子,盘子大小不等,大的在下,小的在上(如图).有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一个盘子,并且在移动过程中, ...

  6. Python之汉诺塔递归运算

    汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆 ...

  7. c语言-汉诺塔递归调用

    #include<stdio.h> int main() { void hano_tower(int n,char one,char two,char three); int m=0; p ...

  8. C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)

    本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...

  9. 汉诺塔python3函数编写和过程分析

    !/usr/bin/env python3 -- coding: utf-8 -- 利用递归函数计算阶乘 N! = 1 * 2 * 3 * ... * N def fact(n): if n == 1 ...

随机推荐

  1. JavaSE、JavaEE、JavaME三者的区别

    1. Java SE(Java Platform,Standard Edition). Java SE 以前称为 J2SE. 它允许开发和部署在桌面.服务器.嵌入式环境和实时环境中使用的 Java 应 ...

  2. MongoDB_1

    突然想去看下MongoDB的东西,于是有了这篇文章.其实很早以前就看过一些关于NoSql的文章,还记得当时里面有介绍MongoDB的,多瞅了2眼,并且在Window下安装了MongoDB的驱动,小玩了 ...

  3. CouchBase 遇到问题笔记(一)

    刚开始看CouchBase,按照官网给出的示例,边敲边理解,遇到了一个很奇怪的问题,如下代码: IView<IViewRow> view = client.GetView("be ...

  4. Topas命令详解

    Topas命令详解 执行topas命令后如图所示: #topas 操作系统的最全面动态,而又查看方便的性能视图就是topas命令了,下面以topas输出为例,对AIX系统的性能监控做简要描述,供运维工 ...

  5. CGContextRef一点用法

      quartz 是主要的描画接口,支持基于路径的描画.抗锯齿渲染.渐变填充模式.图像.颜色.坐标空间变换.以及PDF 文档的创建.显示.和分析.UIKit 为Quartz 的图像和颜色操作提供了Ob ...

  6. 文字排版--粗体(font-weight)

    我们还可以使用css样式来改变文字的样式:粗体.斜体.下划线.删除线,可以使用下面代码实现设置文字以粗体样式显示出来. p span{font-weight:bold;} 在这里大家可以看到,如果想为 ...

  7. SpringMVC4+thymeleaf3的一个简单实例(篇三:页面参数获取)

    本篇将通过示例介绍页面参数是如何传递到后台的.我们继续沿用之前搭好的程序结构,如果你不知道,请参照前两篇.为方便跳转页面,我们在首页以及zoolist.html页面都加上彼此地址的链接:首页: zoo ...

  8. ZOJ2112 Dynamic Rankings 动态区间第K最值 平方分割

    有了上一题的经验(POJ的静态区间第K最值)再解决这道题就轻松多了 空间5256KB,时间3330ms,如果把动态开点的平衡树换成数组模拟的话应该会更快 之所以选择了平方分割而不是树套树,不仅是所谓趁 ...

  9. 仿照淘宝首页做的一个高度伪对齐demo

    功能就是当右边高度没有左边高的情况下做的一些处理,由于本人技术有限,不兼容所有浏览器, <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tra ...

  10. 关于ASP.NET Session State Server

    最近公司开发的一个网站因为访问量增大,需要添加多台Web Server来进行负载均衡. 但是在做负载均衡前需要将一些原来固定存储在单台机器上的东西分离出来,使之能单独存在在一个独立的机器上,其中就有S ...