Picnic Cows

                    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                          Total Submission(s): 2192    Accepted Submission(s): 675

Problem Description
It’s summer vocation now. After tedious milking, cows are tired and
wish to take a holiday. So Farmer Carolina considers having a picnic
beside the river. But there is a problem, not all the cows consider it’s
a good idea! Some cows like to swim in West Lake, some prefer to have a
dinner in Shangri-la ,and others want to do something different. But in
order to manage expediently, Carolina coerces all cows to have a
picnic!
Farmer Carolina takes her N (1<N≤400000) cows to the
destination, but she finds every cow’s degree of interest in this
activity is so different that they all loss their interests. So she has
to group them to different teams to make sure that every cow can go to a
satisfied team. Considering about the security, she demands that there
must be no less than T(1<T≤N)cows in every team. As every cow has its
own interest degree of this picnic, we measure this interest degree’s
unit as “Moo~”. Cows in the same team should reduce their Moo~ to the
one who has the lowest Moo~ in this team——It’s not a democratical
action! So Carolina wishes to minimize the TOTAL reduced Moo~s and
groups N cows into several teams.
For example, Carolina has 7 cows to
picnic and their Moo~ are ‘8 5 6 2 1 7 6’ and at least 3 cows in every
team. So the best solution is that cow No.2,4,5 in a team (reduce
(2-1)+(5-1) Moo~)and cow No.1,3,6,7 in a team (reduce ((7-6)+(8-6))
Moo~),the answer is 8.
 
Input
The input contains multiple cases.
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line.
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on.
 
Output
One
line for each test case, containing one integer means the minimum of
the TOTAL reduced Moo~s to group N cows to several teams.
 
Sample Input
7 3
8 5 6 2 1 7 6
 
Sample Output
8
 
Source
 

【思路】

斜率优化+DP

首先问一句Carolina和John什么关系 ヘ(;´Д`ヘ)

不难设计出转移方程为:

f[i]=min{ f[j]+C[i]-C[j]+(i-j)*X[j+1] } T<=j<=i-T

其中C表示X的前缀和。

如果j>k且决策j优于决策k则有

f[j]-f[k]+C[k]-C[j]-k*X[k+1]+j*X[j+1]<i*(X[j+1]-X[k+1])

维护指定区间内的下凸包即可。

需要注意的是输入输出用int64,而且斜率部分不能用之前直接除的写法了,因为X有long long,可能误差会比较大,改用化除为乘的方法。

   坑了我好长时间 T_T

【代码】

 #include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long LL;
typedef long double LD;
const int N = +; int L,R,n,T,q[N]; LL A[N],C[N],f[N];
LL UP(int j,int k) {
return f[j]-C[j]+j*A[j+]-(f[k]-C[k]+k*A[k+]);
}
LL DN(int j,int k) {
return A[j+]-A[k+];
}
int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
while(scanf("%d%d",&n,&T)==) {
for(int i=;i<=n;i++) scanf("%I64d",&A[i]);
sort(A+,A+n+);
for(int i=;i<=n;i++) C[i]=C[i-]+A[i];
L=R=;
for(int i=;i<=n;i++) {
while(L<R && UP(q[L+],q[L])<=i*DN(q[L+],q[L])) L++;
int t=q[L],j;
f[i]=f[t]-C[t]+t*A[t+]-i*A[t+]+C[i];
if((j=i-T+)>=T) {
while(L<R && UP(j,q[R])*DN(q[R],q[R-])<=UP(q[R],q[R-])*DN(j,q[R])) R--;
q[++R]=j;
}
}
printf("%I64d\n",f[n]);
}
return ;
}

HDU 3045 Picnic Cows(斜率优化DP)的更多相关文章

  1. hdu 3045 Picnic Cows(斜率优化DP)

    题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...

  2. HDU 3045 - Picnic Cows - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 It’s summer vocation now. After tedious milking, ...

  3. HDU3045 Picnic Cows —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3045 Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memor ...

  4. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  5. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  6. HDU 3045 Picnic Cows

    $dp$,斜率优化. 设$dp[i]$表示$1$至$i$位置的最小费用,则$dp[i]=min(dp[j]+s[i]-s[j]-(i-j)*x[j+1])$,$dp[n]$为答案. 然后斜率优化就可以 ...

  7. HDU 3045 picnic cows(斜率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 题目大意:有n个数,可以把n个数分成若干组,每组不得小于m个数,每组的价值=除了该组最小值以外每 ...

  8. HDU 3401 Trade(斜率优化dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 题意:有一个股市,现在有T天让你炒股,在第i天,买进股票的价格为APi,卖出股票的价格为BPi,同时最多买 ...

  9. HDU 4258 Covered Walkway 斜率优化DP

    Covered Walkway Problem Description   Your university wants to build a new walkway, and they want at ...

随机推荐

  1. 生产者与消费者(三)---BlockingQueue

    前面阐述了实现生产者与消费者问题的两种方式:wait() / notify()方法 和 await() / signal()方法,本文继续阐述多线程的经典问题---生产者与消费者的第三种方式:Bloc ...

  2. vs2010 “发生生成错误,运行上次的成功运行的程序”怎么改回不运行。

    当程序出现错误时,会出现下面对话框: 如果选择"是",并且勾选了"不再显示此对话框",对你以后的操作时非常麻烦的. 许多同学想再次调出次窗口,不知道怎么操作,操 ...

  3. Git 基本使用配置

    // 1.配置用户名邮箱:用于记录你个人的用户名称和电子邮件地址,用户名可随意修改,git 用于记录是谁提交了更新,以及更新人的联系方式: $ git config --global user.nam ...

  4. mysql备份sql,脚本

    MySQL 安装位置:/usr/local/mysq 论坛数据库名称为:bbs MySQL root 密码:123456 数据库备份目的地:/var/db_backup/ #! /bin/bash / ...

  5. node 后台ajax文件(同时支持http、https)

    var http = require("http"), Url = require("url"), querystring = require('queryst ...

  6. 将VIM配置成强大的IDE(二)

    将VIM配置成强大的IDE(二) 前面我们已经安装好了vundle这一款强大的插件管理工具. 下面,当然是配置我们需要的插件了. 在VIM下面通过命令 help vundle 我们可以知道,VUNDL ...

  7. python基础 [Alex视频]

    vi hello.py#!/usr/bin/env pythonprint "hello world!"while True: print("hello world!&q ...

  8. PDF转图片 C# with Adobe API

    PDF转图片大概有十几种方式,褒贬不一,我就详细给大家说一下我认为效率最高的方式,使用Adobe官方的SDK 安装acrobat reader 9.0以上即可,勾选如下组件.

  9. 基于page的简单页面推送技术

    我们可以先看下简单效果,打开2个页面可以看到推送效果 服务端我们只需要下面一个方法 using System; using System.Collections.Generic; using Syst ...

  10. WPF样式资源文件简单运用

    WPF通过资源来保存一些可以被重复利用的样式,下面的示例展示了简单的资源样式文件的使用: 一.xaml中定义资源及简单的引用 <Window.Resources > <!--wpf窗 ...