题解-[国家集训队]Crash的数字表格 / JZPTAB

前置知识:

莫比乌斯反演 </>


[国家集训队]Crash的数字表格 / JZPTAB

单组测试数据,给定 \(n,m\) ,求

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\bmod 20101009
\]

数据范围:\(1\le n,m\le 10^7\)。


作为写出了最暴力的做法的蒟蒻,来推个式子。

\(n\le m\),一气呵成:

\[\begin{split}
g(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\\
=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{\gcd(i,j)}\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{d}[\gcd(i,j)=d]\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}ijd[\gcd(i,j)=1]\\
=&\sum\limits_{d=1}^n d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j\sum\limits_{k|\gcd(i,j)}\mu(k)\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i[k|i]\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j[k|j]\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac {n}{dk}\rfloor}ik\sum\limits_{j=1}^{\lfloor\frac {m}{dk}\rfloor}jk\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^nk^2\mu(k)\frac{\lfloor\frac{n}{dk}\rfloor(\lfloor\frac{n}{dk}\rfloor+1)}{2}\cdot\frac{\lfloor\frac{m}{dk}\rfloor(\lfloor\frac{m}{dk}\rfloor+1)}{2}\\
\end{split}
\]

将 \(x=dk\) 带入:

\[g(n,m)=\sum\limits_{x=1}^nx\cdot\frac{\lfloor\frac{n}{x}\rfloor(\lfloor\frac{n}{x}\rfloor+1)}{2}\cdot\frac{\lfloor\frac{m}{x}\rfloor(\lfloor\frac{m}{x}\rfloor+1)}{2}\sum\limits_{k|x}k\mu(k)
\]

然后筛 \(\mu(k)\) 时顺便计算 \(h(k)=k\mu(k)\),最后狄利克雷前缀和求 \(f(k)=\sum\limits_{k|x}k\mu(k)\)。

别忘了膜拜 \(20101009\),时间复杂度 \(\Theta(N+n)\)。

#include <bits/stdc++.h>
using namespace std; //&Start
#define lng long long
#define lit long double
#define kk(i,n) "\n "[i<n]
const int inf=0x3f3f3f3f;
const lng Inf=1e17; //&Mobius
const int N=1e7;
const int mod=20101009;
bitset<N+10> np;
int mu[N+10],cnt,p[N+10],f[N+10];
void Mobius(){
f[1]=mu[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) p[++cnt]=i,mu[i]=-1;
f[i]=(mu[i]*i+mod)%mod;
for(int j=1;j<=cnt&&i*p[j]<=N;j++){
np[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
mu[i*p[j]]=-mu[i];
}
}
for(int j=1;j<=cnt;j++)
for(int i=1;i*p[j]<=N;i++)
(f[i*p[j]]+=f[i])%=mod; //狄利克雷前缀和
} //&Data
int n,m,ans;
int bitfun(int x){
lng res=1ll*x*f[x]%mod;
(res*=1ll*(n/x+1)*(n/x)/2%mod)%=mod;
(res*=1ll*(m/x+1)*(m/x)/2%mod)%=mod; //如上
//这个1ll不乘要爆long long,30分。
return (int)res;
} //&Main
int main(){
Mobius();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=1;i<=n;i++)
(ans+=bitfun(i))%=mod;
printf("%d\n",ans);
return 0;
}

祝大家学习愉快!

题解-[国家集训队]Crash的数字表格 / JZPTAB的更多相关文章

  1. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  2. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  3. 【题解】[国家集训队]Crash的数字表格 / JZPTAB

    求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...

  4. 题解 P1829 【[国家集训队]Crash的数字表格 / JZPTAB】

    题目 我的第一篇莫比乌斯反演题解 兴奋兴奋兴奋 贡献一个本人自己想的思路,你从未看到过的船新思路 [分析] 显然,题目要求求的是 \(\displaystyle Ans=\sum_{i=1}^n\su ...

  5. [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】

    传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...

  6. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  7. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  8. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

  9. 【[国家集训队]Crash的数字表格 / JZPTAB】

    这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\time ...

随机推荐

  1. Kafka 消费者及消费者分区策略

    消费方式: consumer 采用 pull(拉)模式从 broker 中读取数据. push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的. 它的目标是尽可能以最 ...

  2. 极客mysql06

    两阶段锁:在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放, 而是要等到事务结束时才释放. 建议:如果你的事务中需要锁多个行,要把最可能造成锁冲突.最可能影响并发度的锁 ...

  3. 重置ubuntu13.04 密码

    方法如下: Restart Machine HOLD Shift Button ( You will get message "GRUB Loading") Select the ...

  4. CSS属性(display)

    1.display属性 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset= ...

  5. 记php多张图片 合并生成竖列 纵向长图(可用于商品详情图合并下载)

    <?php namespace app\mapi\common\image; /** * 拼接多幅图片成为一张图片 * * 参数说明:原图片为文件路径数组,目的图片如果留空,则不保存结果 * * ...

  6. Guitar Pro小课堂之如何演奏刮弦

    每当我们听到吉他现场演出的时候,看到吉他手在激烈的刮弦时,都觉得很酷,非常有感染力.刮弦在我们弹吉他或编曲时,会经常用到,虽然时间很短,但会为你加分不少. 那么我们应该如何演奏刮弦呢,我们先用E5和弦 ...

  7. 【PYTEST】第二章编写测试函数

    知识点: assert 测试函数标记 跳过测试 标记预期失败的测试用例 1. asseet 返回的都是布尔值,等于False(F) 就是失败, assert 有很多 assert something ...

  8. 【VUE】8.VUEX核心概念

    1. Vuex核心概念主要如下 state : 存储共享数据 mutation: 变更store中的数据,方法,不能异步操作 action: 异步操作,通过触发mutation变更数据 getter: ...

  9. 【PUPPETEER】初探之拖拽操作(五)

    一.知识点 page.mouse elementHandle.boundingBox() ignoreDefaultArgs:['--enable-automation']   waitUntil 二 ...

  10. zabbix 用Telegram报警!!!

    第一步:先在Telegram 注册个机器人!!! @BotFather在Telegram中添加联系人并按"开始",然后键入: /newbot输入你要新建的机器人名称在电报中@你的机 ...