(数据科学学习手札109)Python+Dash快速web应用开发——静态部件篇(中)
本文示例代码已上传至我的
Github
仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
这是我的系列教程Python+Dash快速web应用开发的第七期,在上一期的文章中,我们对Dash
生态里常用的一些简单静态部件进行了介绍和功能展示,并且get到dcc.Markdown()
这种非常方便的静态部件。
而在今天的教程内容中,我将带大家学习Dash
中渲染网页静态表格的常用方法,并在最后的例子中教大家如何配合Dash
,简简单单编写一个数据库查询应用~
图1
2 在Dash中渲染静态表格
在Dash
中渲染静态表格,方法有很多,而我们今天要学习的方法,是配合之前文章介绍过的第三方拓展dash_bootstrap_components
中的Table()
部件,借助bootstrap
的特性来快速创建美观的静态表格:
图2
## 2.1 静态表格的构成
要学习如何基于Dash
在前端中渲染出一张静态表格,首先我们需要学习其元素构成,Dash
延续html
中table
标签相关概念,由Table()
、Thead()
、Tbody()
、Tr()
、Th()
以及Td()
等6个部件来构成一张完整的表,先从一个简单的例子出发:
app1.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
dbc.Table(
[
html.Thead(
html.Tr(
[
html.Th('第一列'),
html.Th('第二列'),
]
)
),
html.Tbody(
[
html.Tr(
[
html.Td('一行一列'),
html.Td('一行二列'),
]
),
html.Tr(
[
html.Td('二行一列'),
html.Td('二行二列'),
]
)
]
)
]
),
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
if __name__ == '__main__':
app.run_server(debug=True)
图3
注意,我们这里使用到的Table()
部件来自dash_bootstrap_components
,而表格其余的构成部件均来自Dash
原生的dash_html_components
库,这些部件分别的作用如下:
- Table()
Table()
是一张静态表格最外层的部件,而之所以选择dash_bootstrap_components
中的Table()
,是因为其自带了诸多实用参数,常用的如下:
bordered:bool型,用于设置是否保留表格外边框线
borderless:bool型,用于设置是否删除表格内部单元格框线
striped:bool型,用于设置是否对数值行应用斑马着色方案,即相邻行背景色不同
dark:bool型,用于设置是否应用暗黑主题
hover:bool型,当设置为True时,鼠标悬浮于某行会有对应的效果
通过上述参数,我们就可以改变静态表格的整体效果,譬如设置dark=True
之后的app1.py
效果如下:
图4
- Thead()与Tbody()
在部件Table()
之下一级需要子元素Thead()
与Tbody()
,分别用于存放表头信息以及表数值内容信息。
- Tr()、Th()与Td()
经过前面Table()
嵌套Thead()
与Tbody()
的过程之后,我们就可以分别开始在表头区域和数值区域正式组织数据内容。
既然是一张表格,那么还是要按照先行后列的网格方式组织内容。而Tr()
部件的作用就是作为行容器,其内部嵌套的子元素则是表格中每个单元格位置上的元素。
其中在Thead()
嵌套的Tr()
内部,需要使用Th()
来设置每列的字段名称,而在Tbody()
嵌套的Tr()
内部,Td()
与Th()
都可以用来设置每个单元格的数值内容,只不过Th()
在表现单元格数值时有加粗效果:
app2.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
dbc.Table(
[
html.Thead(
html.Tr(
[
html.Th('字段1'),
html.Th('字段2')
]
)
),
html.Tbody(
[
html.Tr(
[
html.Th('1'),
html.Td('test')
]
),
html.Tr(
[
html.Th('2'),
html.Td('test')
]
),
html.Tr(
[
html.Td('3'),
html.Td('test')
]
)
]
)
],
striped=True
),
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
if __name__ == '__main__':
app.run_server(debug=True)
图5
而Th()
与Td()
均有额外参数colSpan
与rowSpan
,可以传入整数,来实现横向或纵向合并单元格的效果,譬如下面的例子:
app3.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
dbc.Table(
[
html.Thead(
html.Tr(
[
html.Th('字段1'),
html.Th('字段2'),
html.Th('字段3'),
html.Th('字段4'),
]
)
),
html.Tbody(
[
html.Tr(
[
html.Th('1'),
# style设置水平居中
html.Td('colSpan=2', colSpan=2, style={'text-align': 'center'}),
html.Td('test'),
]
),
html.Tr(
[
html.Th('2'),
html.Td('test'),
# style设置垂直居中
html.Td('rowSpan=2', rowSpan=2, style={'vertical-align': 'middle'}),
html.Td('test')
]
),
html.Tr(
[
html.Th('3'),
html.Td('test'),
html.Td('test')
]
)
]
)
],
striped=True,
bordered=True
),
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
if __name__ == '__main__':
app.run_server(debug=True)
图6
2.2 快速表格渲染
2.2.1 利用列表推导快速渲染静态表格
通过前面的内容,我们知晓了在Dash
中如果渲染一张带有样式的静态表格,而日常需求中,面对批量的数据,我们当然不可能手动编写整张表对应的代码,对于数量较多的表格,我们可以配合Python
中常用的列表推导来实现。
比如下面的例子:
app4.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
import pandas as pd
import numpy as np
fake_df = pd.DataFrame(np.random.rand(1000).reshape(200, 5))
fake_df.rename(lambda s: f'字段{s}', axis=1, inplace=True) # 批量格式化列名
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
dbc.Table(
[
html.Thead(
html.Tr(
[html.Th('行下标', style={'text-align': 'center'})] +
[
html.Th(column, style={'text-align': 'center'})
for column in fake_df.columns
]
)
),
html.Tbody(
[
html.Tr(
[html.Th(f'#{idx}', style={'text-align': 'center'})] +
[
html.Td(row[column], style={'text-align': 'center'})
for column in fake_df.columns
]
)
for idx, row in fake_df.iterrows()
]
)
],
striped=True,
bordered=True
),
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
if __name__ == '__main__':
app.run_server(debug=True)
在生成表头和每行内容时应用列表推导,使得我们的代码更加简洁。
图7
2.2.2 利用from_dataframe()快速渲染表格
上述的列表推导方式虽说已经简洁了很多,但dash_bootstrap_components
还提供了Table.from_dataframe()
方法,可以直接传入pandas
数据框来快速制作简易的静态表格。
它的样式相关参数与dbc.Table()
一致,缺点是自定义表格内部元素样式的自由度没有前面列表推导高:
app5.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
import pandas as pd
import numpy as np
fake_df = pd.DataFrame(np.random.rand(1000).reshape(200, 5))
fake_df.rename(lambda s: f'字段{s}', axis=1, inplace=True) # 批量格式化列名
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
# 一行代码渲染静态表格
dbc.Table.from_dataframe(fake_df, striped=True),
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
if __name__ == '__main__':
app.run_server(debug=True)
图8
3 自制简易的数据库查询系统
在学习了今天的内容之后,我们就可以创建很多以表格为主体内容的web应用,典型如数据库查询系统,我们以Postgresql
为例,配合pandas
与sqlalchemy
的相关功能,来快速打造一个简单的数据库查询系统。
首先将本期附件中的所有数据表利用下面的代码导入目标数据库中:
图9
图10
接着只需要配合Dash
,短短的几十行代码就可以实现下面的效果:
图11
对应代码如下:
app6.py
import dash
import dash_html_components as html
import dash_bootstrap_components as dbc
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import pandas as pd
from sqlalchemy import create_engine
postgres_url = 'postgresql://postgres:填入你的密码@localhost:5432/Dash'
engine = create_engine(postgres_url)
app = dash.Dash(__name__)
app.layout = html.Div(
dbc.Container(
[
dbc.Row(
[
dbc.Col(dbc.Button('更新数据库信息', id='refresh-db', style={'width': '100%'}), width=2),
dbc.Col(dcc.Dropdown(id='db-table-names', placeholder='选择库中数据表', style={'width': '100%'}), width=4),
dbc.Col(dbc.Button('查询', id='query', style={'width': '100%'}), width=1)
]
),
html.Hr(),
dbc.Row(
[
dbc.Col(
id='query-result'
)
]
)
],
style={
'margin-top': '50px' # 设置顶部留白区域高度
}
)
)
@app.callback(
Output('db-table-names', 'options'),
Input('refresh-db', 'n_clicks'),
prevent_initial_call=True
)
def query_data_records(n_clicks):
# 提取目标表格并查询其最多前500行记录
table_names = pd.read_sql_query("select tablename from pg_tables where schemaname='public'", con=engine)
return [{'label': name, 'value': name} for name in table_names['tablename']]
@app.callback(
Output('query-result', 'children'),
Input('query', 'n_clicks'),
State('db-table-names', 'value'),
prevent_initial_call=True
)
def refresh_table_names(n_clicks, value):
if value:
query_result = pd.read_sql_query(f'select * from {value} limit 500', con=engine)
return html.Div(dbc.Table.from_dataframe(query_result, striped=True), style={'height': '600px', 'overflow': 'auto'})
else:
return dash.no_update
if __name__ == '__main__':
app.run_server(debug=True)
以上就是本文的全部内容,欢迎在评论区与我进行讨论~
(数据科学学习手札109)Python+Dash快速web应用开发——静态部件篇(中)的更多相关文章
- (数据科学学习手札108)Python+Dash快速web应用开发——静态部件篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札110)Python+Dash快速web应用开发——静态部件篇(下)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札118)Python+Dash快速web应用开发——特殊部件篇
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札102)Python+Dash快速web应用开发——基础概念篇
本文示例代码与数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的新系列教程Python+Dash快 ...
- (数据科学学习手札115)Python+Dash快速web应用开发——交互表格篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札116)Python+Dash快速web应用开发——交互表格篇(中)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札117)Python+Dash快速web应用开发——交互表格篇(下)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札103)Python+Dash快速web应用开发——页面布局篇
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札105)Python+Dash快速web应用开发——回调交互篇(中)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
随机推荐
- poj1821 Fence(dp,单调队列优化)
题意: 由k(1 <= K <= 100)个工人组成的团队应油漆围墙,其中包含N(1 <= N <= 16 000)个从左到右从1到N编号的木板.每个工人i(1 <= i ...
- Codeforces Round #575 (Div. 3) B. Odd Sum Segments 、C Robot Breakout
传送门 B题题意: 给你n个数,让你把这n个数分成k个段(不能随意调动元素位置).你需要保证这k个段里面所有元素加起来的和是一个奇数.问可不可以这样划分成功.如果可以打印YES,之后打印出来是从哪里开 ...
- Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard
传送门 题意: 给你一个黑白相间的1e9*1e9的棋盘,你需要从里面找出来由b个黑色的格子和w个白色的格子组成的连通器(就是你找出来的b+w个格子要连接在一起,不需要成环).问你可不可以找出来,如果可 ...
- POJ2429 GCD & LCM Inverse pollard_rho大整数分解
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...
- HDU 1173 思路题
题目大意 有n个地点(坐标为实数)需要挖矿,让选择一个地点,使得在这个地方建造基地,到n个地点的距离和最短,输出基地的坐标. 题解+代码: 1 /* 2 把这个二维分开看(即把所有点投影到x轴上,再把 ...
- spyder import tensorflow
之前安装了tensorflowgpu,但是在spyder中import会失败. 原因是因为新建了环境,要activate tensorflow-gpu进入安装了tensorflow 的环境才可以imp ...
- spring-cloud-netflix-hystrix-dashboard
Hystrix-dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard我们可以在直观地看到各Hystrix Command的请求响应时间, 请求成功率等数 ...
- 内网域渗透之MS14-068复现(CVE-2014-6324)
在做域渗透测试时,当我们拿到了一个普通域成员的账号后,想继续对该域进行渗透,拿到域控服务器权限.如果域控服务器存在MS14_068漏洞,并且未打补丁,那么我们就可以利用MS14_068快速获得域控服务 ...
- Windows 10 Emoji shortcuts
Windows 10 Emoji shortcuts Windows 10 Emoji 快捷方式 https://support.microsoft.com/en-us/windows/windows ...
- HTML5 Canvas 画图组件 All In One
HTML5 Canvas 画图组件 All In One Canvas SVG Canvas + SVG refs https://www.infoq.cn/article/1BVg9VDSmqyHv ...