题目链接

题目大意:给定$n$个子串,要求构造一个长度为$m$的母串使得至少有一个子串是其子串。问方案数。

------------------------

我们可以对要求进行转化:求出不合法的方案数,总方案数减去不合法的方案数即为合法方案数。

首先建一个AC自动机,对于每个串的末尾结点及其$fail$边指向的结点都打上标记,表示遍历AC自动机的时候不经过这些点(因为如果一个串是另一个串的后缀,显然这两个串都是合法的)。

然后就可以大力DP了。设$f[i][j]$表示走了$i$步到达$j$结点的方案数。则有转移方程$f[i+1][son(j)]+=f[i][j]$。答案即为$m^{26}-\sum\limits_{i=1}^{cnt} f[m][i]$。

代码:

#include<bits/stdc++.h>
using namespace std;
const int mod=1e4+;
int n,m,f[][],cnt,sum,ans=;
string ss;
struct node
{
int ch[],end,fail;
}tree[];
inline void build(string s)
{
int l=s.length(),now=;
for (int i=;i<l;i++)
{
if (!tree[now].ch[s[i]-'A']) tree[now].ch[s[i]-'A']=++cnt;
now=tree[now].ch[s[i]-'A'];
}
tree[now].end=;
}
inline void getfail()
{
queue<int> q;
for (int i=;i<;i++)
{
if (tree[].ch[i]) tree[].fail=,q.push(tree[].ch[i]);
}
while(!q.empty())
{
int now=q.front();q.pop();
for (int i=;i<;i++)
{
if (!tree[now].ch[i])
{
tree[now].ch[i]=tree[tree[now].fail].ch[i];
continue;
}
tree[tree[now].ch[i]].fail=tree[tree[now].fail].ch[i];
q.push(tree[now].ch[i]);
tree[tree[now].ch[i]].end|=tree[tree[tree[now].fail].ch[i]].end;
}
}
}
int main()
{
cin>>n>>m;
for (int i=;i<=n;i++) cin>>ss,build(ss);
tree[].fail=;
getfail();
f[][]=;
for (int i=;i<=m;i++)
for (int j=;j<=cnt;j++)
for (int k=;k<;k++)
if (!tree[tree[j].ch[k]].end)
f[i][tree[j].ch[k]]+=f[i-][j],f[i][tree[j].ch[k]]%=mod;
for (int i=;i<=m;i++) ans=(ans*)%mod;
for (int i=;i<=cnt;i++) sum+=f[m][i];
printf("%d",((ans-sum)%mod+mod)%mod);
return ;
}

【JSOI2007】文本生成器 题解(AC自动机+动态规划)的更多相关文章

  1. 2021.11.11 P4052 [JSOI2007]文本生成器(AC自动机+DP)

    2021.11.11 P4052 [JSOI2007]文本生成器(AC自动机+DP) https://www.luogu.com.cn/problem/P4052 题意: JSOI 交给队员 ZYX ...

  2. 【bzoj1030】: [JSOI2007]文本生成器 字符串-AC自动机-DP

    [bzoj1030]: [JSOI2007]文本生成器 首先把匹配任意一个的个数的问题转化为总个数-没有一个匹配的个数 先构造AC自动机,然后枚举每一位的字母以及在自动机上的位置 f[i][j]为第i ...

  3. BZOJ1030 JSOI2007 文本生成器 【AC自动机】【DP】*

    BZOJ1030 JSOI2007 文本生成器 Description JSOI交给队员ZYX一个任务,编制一个称之为"文本生成器"的电脑软件:该软件的使用者是一些低幼人群,他们现 ...

  4. [Bzoj1030][JSOI2007]文本生成器(AC自动机)(dp)

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5254  Solved: 2172[Submit][Stat ...

  5. BZOJ 1030 [JSOI2007]文本生成器(AC自动机)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1030 [题目大意] 求出包含任意一个给定串的串数量 [题解] 我们求出不包含任意一个给 ...

  6. [JSOI2007]文本生成器(AC自动机+DP)

    题意 给你n个串.问有多少长度为m的串使得这n个串至少在其中出现过一次.输出答案膜10007意义下的结果. (n<=100,每个串的长度<=100) 题解 在AC自动机上跑DP. 用到一个 ...

  7. 【洛谷 P4052】 [JSOI2007]文本生成器(AC自动机,DP)

    题目链接 AC自动机上dp第一题嗷. 如果直接求可读文本的数量,显然要容斥,不好搞. 于是考虑求不可读文本的数量,再用\(26^m\)减去其即可. 建出AC自动机,如果一个节点为单词结尾或其fail链 ...

  8. BZOJ1030 [JSOI2007]文本生成器[DP+AC自动机]

    我学到现在才是初三学弟的水平..哭 这里相当于求长度为$m$的,字符集$\{A...Z\}$的且不包含任一模式串的文本串个数.这是一个典型的AC自动机匹配计数问题. 设$f_{i,j}$表示在AC自动 ...

  9. bzoj 1030 [JSOI2007]文本生成器(AC自动机+DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1030 [题意] 给n个小串,随机构造一个长为m的大串,一个串合法当且仅当包含一个或多个 ...

  10. [JSOI2007]文本生成器(AC自动机,DP)

    题目链接: 洛谷 LOJ BZOJ 题目大意:给定 $n$ 个只含大写字母的串(称为可读串),问有多少种只含大写字母的长为 $m$ 的串,包含至少一个可读串. $1\le n\le 60,1\le \ ...

随机推荐

  1. day49 数据库终章

    目录 一.pymysql补充 二.数据库补充 1 视图(了解) 2 触发器(了解) 3 事务 4 存储过程(了解) 5 函数 6 流程控制 7 索引 8 b+树 9 聚集索引(primary key) ...

  2. 华为交换机如何配置SSH远程登录,一分钟秒学会

    从事网络运维工作的小伙伴们都知道,在交换机正式上线时,必须完成配置SSH远程登录,这样做目的是为了日后,维护方便,不需要每次登录设备都要跑到机房,这样既不现实,又费事. 远程登录方式 目前网络设备中主 ...

  3. MYSQL 之 JDBC(十二): 处理Blob

    LOB,即Large Objects(大对象),是用来存储大量的二进制和文本数据的一种数据类型 LOB分为两种内省:内部LOB和外部LOB 内部LOB将数据以字节流的形式存储在数据库的内部.因而内部L ...

  4. Kubernetes部署通用手册 (支持版本1.19,1.18,1.17,1.16)

    Kubernetes平台环境规划 操作环境 rbac 划分(HA高可用双master部署实例) 本文穿插了ha 高可用部署的实例,当前章节设计的是ha部署双master 部署 内网ip 角色 安装软件 ...

  5. 数据清洗与准备知识图谱-《利用Python进行数据分析》

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.

  6. 网络编程-UDP、TCP

    总结

  7. 使用Java带你打造一款简单的英语学习系统

    [一.项目背景] 随着移动互联网的发展,英语学习系统能结构化的组织海量资料.针对用户个性需求,有的放矢地呈现给用户,从而为英语学习者提供便利,提升他们的学习效率. [二.项目目标] 1. 实现美观的界 ...

  8. Active Directory - Creating users via PowerShell

    Method1: Create a user by executing the following PowerShell Script. New-ADUser -name 'Michael Jorda ...

  9. 题解 SP1841 【PPATH - Prime Path】

    模拟赛考到了这个题,但我傻傻的用了\(DFS\),于是爆了零 后来才想明白,因为搜索树的分支很多,但答案的深度却又没有那么深,所以在这里\(BFS\),而\(DFS\)一路搜到底的做法则会稳稳地\(T ...

  10. 云原生时代高性能Java框架—Quarkus(二)

    --- *构建Quarkus本地镜像.容器化部署Quarkus项目* Quarkus系列博文 Quarkus&GraalVM介绍.创建并启动第一个项目 构建Quarkus本地镜像.容器化部署Q ...