Description

An undergraduate student, realizing that he needs to do research to improve his chances of being accepted to graduate school, decided that it is now time to do some independent research. Of course, he has decided to do research in the most important domain:
the requirements he must fulfill to graduate from his undergraduate university. First, he discovered (to his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement, the writing requirement, the science requirement, the
foreign-language requirement, and the field-of-specialization requirement. Formally, a requirement is a fixed number of classes that he has to take during his undergraduate years. Thus, for example, the foreign language requirement specifies that the student
has to take 4 classes to fulfill this requirement: French I, French II, French III, and French IV. Having analyzed the immense multitude of the classes that need to be taken to fulfill the different requirements, our student became a little depressed about
his undergraduate university: there are so many classes to take…

Dejected, the student began studying the requirements of other universities that he might have chosen after high school. He found that, in fact, other universities had exactly the same 5 requirements as his own university. The only difference was that different
universities had different number of classes to be satisfied in each of the five requirement.

Still, it appeared that universities have pretty similar requirements (all of them require a lot of classes), so he hypothesized that no two universities are very dissimilar in their requirements. He defined the dissimilarity of two universities X and Y as
|x1 − y1| + |x2 − y2| + |x3 − y3| + |x4 − y4| + |x5 − y5|,
where an xi (yi) is the number of classes in the requirement i of university X (Y) multiplied by an appropriate factor that measures hardness of the corresponding requirement at the corresponding
university.

Input

The first line of the input file contains an integer N (1 ≤ N ≤ 100 000), the number of considered universities. The following N lines each describe the requirements of a university. A university X is described by the
five non-negative real numbers x1 x2 x3 x4 x5.

Output

On a single line, print the dissimilarity value of the two most dissimilar universities. Your answer should be rounded to exactly two decimal places.

Sample Input

3
2 5 6 2 1.5
1.2 3 2 5 4
7 5 3 2 5

Sample Output

12.80

题意:在五维坐标系下求n个点中两个点的最大曼哈顿距离。

思路:以二维坐标系为例,(x1,y1)(x2,y2)之间的距离为|x1-x2|+|y1-y2|,可能取±(x1-x2)±(y1-y2),且其他情况下算出来的关于这两个点的最大距离肯定比正确算曼哈顿距离的值小(去掉绝对值符号了)。我们可以把同一个坐标的放在一起,变为(±x1±y1)-(±x2±y2)。(注:这里x1和x2前面的符号是一致的,y1和y2前面的符号是一致的,这样才能保证对应值仍保持相减关系)。所以我们只要枚举每一维的分量前面的符号即可,然后求出每一个符号分量状态的最大值和最小值的差,更新最大值就行。

下面给出n维的模板(时间复杂度为O(n*dem*2^dem)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
#define dem 5
struct node{
double p[dem+1];
}a[maxn];
double maxx[1<<dem],minx[1<<dem]; int main()
{
int n,m,i,j,state,t;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=dem;j++){
scanf("%lf",&a[i].p[j]);
}
}
for(state=0;state<(1<<dem);state++){
maxx[state]=-inf;
minx[state]=inf;
}
double ans=0;
for(state=0;state<(1<<dem);state++){
for(i=1;i<=n;i++){
double cnt=0;
for(t=1;t<=dem;t++){
if(state&(1<<(t-1)) ){
cnt+=a[i].p[t];
}
else{
cnt-=a[i].p[t];
}
}
maxx[state]=max(maxx[state],cnt);
minx[state]=min(minx[state],cnt);
}
ans=max(ans,maxx[state]-minx[state]);
}
printf("%.2f\n",ans);
}
return 0;
}

poj2926Requirements (曼哈顿距离)的更多相关文章

  1. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  2. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  3. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  4. 【HDU 4311】Meeting point-1(前缀和求曼哈顿距离和)

    题目链接 正经解法: 给定n个点的坐标,找一个点,到其他点的曼哈顿距离之和最小.n可以是100000.大概要一个O(nlogn)的算法.算曼哈顿距离可以把x和y分开计算排好序后计算前缀和就可以在O(1 ...

  5. hdu4666 Hyperspace ——曼哈顿距离

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4666 这题学会了怎么处理曼哈顿距离. 比如维数是k,那么每个点有2^k个状态,求出在每个状态下,所有点 ...

  6. hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. poj 2926:Requirements(最远曼哈顿距离,入门题)

    Requirements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3908   Accepted: 1318 Desc ...

  8. 某个点到其他点的曼哈顿距离之和最小(HDU4311)

    Meeting point-1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 4539 郑厂长系列故事――排兵布阵(曼哈顿距离)

    这虽然是中文题,然而没看懂,不懂的地方,就是在曼哈顿距离这块,网上搜索了一下,写了个程序,是测试曼哈顿距离的. 曼哈顿距离:两点(x1,y1)(x2,y2)的曼哈顿距离为|x1-x2|+|y1-y2| ...

随机推荐

  1. Linux Shell 编程基础详解——吐血整理,墙裂推荐!

    第一部分:Linux Shell 简介 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言. Shell 是指一种应用程序, ...

  2. ABAP中SQL语句,指定索引(oracle)

    ①常用的两种方法: 1.指定使用全表扫描:%_HINTS ORACLE 'FULL(table_name)' 表示扫描整个表 2.指定索引:%_HINTS ORACLE 'INDEX("ta ...

  3. JMM在X86下的原理与实现

    JMM在X86下的原理与实现 Java的happen-before模型 众所周知 Java有一个happen-before模型,可以帮助程序员隔离各个平台多线程并发的复杂性,只要Java程序员遵守ha ...

  4. 03--Docker 容器和镜像常用命令

    一.帮助命令 docker version docker info docker --help =====================镜像命令=========================== ...

  5. Podinfo,迷你的 Go 微服务模板

    ​项目介绍 Podinfo 是一个用 Go 制作的小型 web 应用程序,它展示了在 Kubernetes 中运行微服务的最佳实践. 它已实现的技术指标(截选自官方 README.md ): 里面每一 ...

  6. 7行代码解决P1441砝码称重(附优化过程)

    先贴上最终代码感受一下: #include <bits/stdc++.h> using namespace std; int i, N, M, wi[21], res = 0; int m ...

  7. 学习Java第一天

    public 保证类名和文件名一致 关键字字母全小写,编辑器中有颜色标记 null空常量不能打印 变量就是内存中的存储空间 计算机中最小的存储单元时字节(byte) //1字节(B) = 8位(bit ...

  8. (004)每日SQL学习:物化视图之二

    一.    物化视图概述 Oracle的物化视图是包括一个查询结果的数据库对像,它是远程数据的的本地副本,或者用来生成基于数据表求和的汇总表.物化视图存储基于远程表的数据,也可以称为快照. 物化视图可 ...

  9. 网络编程中 TCP 半开连接和TIME_WAIT 学习

    https://blog.csdn.net/chrisnotfound/article/details/80112736 上面的链接就是说明来 SO_KEEPALIVE 选项 为什么还需要 在应用层开 ...

  10. 【PC Basic】CPU、核、多线程的那些事儿

    一.CPU与核的概念 1.半导体中名词[Wafer][Chip][Die]中文名字和用途 Wafer--晶圆 wafer 即为图片所示的晶圆,由纯硅(Si)构成.一般分为6英寸.8英寸.12英寸规格不 ...