Description

An undergraduate student, realizing that he needs to do research to improve his chances of being accepted to graduate school, decided that it is now time to do some independent research. Of course, he has decided to do research in the most important domain:
the requirements he must fulfill to graduate from his undergraduate university. First, he discovered (to his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement, the writing requirement, the science requirement, the
foreign-language requirement, and the field-of-specialization requirement. Formally, a requirement is a fixed number of classes that he has to take during his undergraduate years. Thus, for example, the foreign language requirement specifies that the student
has to take 4 classes to fulfill this requirement: French I, French II, French III, and French IV. Having analyzed the immense multitude of the classes that need to be taken to fulfill the different requirements, our student became a little depressed about
his undergraduate university: there are so many classes to take…

Dejected, the student began studying the requirements of other universities that he might have chosen after high school. He found that, in fact, other universities had exactly the same 5 requirements as his own university. The only difference was that different
universities had different number of classes to be satisfied in each of the five requirement.

Still, it appeared that universities have pretty similar requirements (all of them require a lot of classes), so he hypothesized that no two universities are very dissimilar in their requirements. He defined the dissimilarity of two universities X and Y as
|x1 − y1| + |x2 − y2| + |x3 − y3| + |x4 − y4| + |x5 − y5|,
where an xi (yi) is the number of classes in the requirement i of university X (Y) multiplied by an appropriate factor that measures hardness of the corresponding requirement at the corresponding
university.

Input

The first line of the input file contains an integer N (1 ≤ N ≤ 100 000), the number of considered universities. The following N lines each describe the requirements of a university. A university X is described by the
five non-negative real numbers x1 x2 x3 x4 x5.

Output

On a single line, print the dissimilarity value of the two most dissimilar universities. Your answer should be rounded to exactly two decimal places.

Sample Input

3
2 5 6 2 1.5
1.2 3 2 5 4
7 5 3 2 5

Sample Output

12.80

题意:在五维坐标系下求n个点中两个点的最大曼哈顿距离。

思路:以二维坐标系为例,(x1,y1)(x2,y2)之间的距离为|x1-x2|+|y1-y2|,可能取±(x1-x2)±(y1-y2),且其他情况下算出来的关于这两个点的最大距离肯定比正确算曼哈顿距离的值小(去掉绝对值符号了)。我们可以把同一个坐标的放在一起,变为(±x1±y1)-(±x2±y2)。(注:这里x1和x2前面的符号是一致的,y1和y2前面的符号是一致的,这样才能保证对应值仍保持相减关系)。所以我们只要枚举每一维的分量前面的符号即可,然后求出每一个符号分量状态的最大值和最小值的差,更新最大值就行。

下面给出n维的模板(时间复杂度为O(n*dem*2^dem)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
#define dem 5
struct node{
double p[dem+1];
}a[maxn];
double maxx[1<<dem],minx[1<<dem]; int main()
{
int n,m,i,j,state,t;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=dem;j++){
scanf("%lf",&a[i].p[j]);
}
}
for(state=0;state<(1<<dem);state++){
maxx[state]=-inf;
minx[state]=inf;
}
double ans=0;
for(state=0;state<(1<<dem);state++){
for(i=1;i<=n;i++){
double cnt=0;
for(t=1;t<=dem;t++){
if(state&(1<<(t-1)) ){
cnt+=a[i].p[t];
}
else{
cnt-=a[i].p[t];
}
}
maxx[state]=max(maxx[state],cnt);
minx[state]=min(minx[state],cnt);
}
ans=max(ans,maxx[state]-minx[state]);
}
printf("%.2f\n",ans);
}
return 0;
}

poj2926Requirements (曼哈顿距离)的更多相关文章

  1. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  2. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

  3. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  4. 【HDU 4311】Meeting point-1(前缀和求曼哈顿距离和)

    题目链接 正经解法: 给定n个点的坐标,找一个点,到其他点的曼哈顿距离之和最小.n可以是100000.大概要一个O(nlogn)的算法.算曼哈顿距离可以把x和y分开计算排好序后计算前缀和就可以在O(1 ...

  5. hdu4666 Hyperspace ——曼哈顿距离

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4666 这题学会了怎么处理曼哈顿距离. 比如维数是k,那么每个点有2^k个状态,求出在每个状态下,所有点 ...

  6. hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. poj 2926:Requirements(最远曼哈顿距离,入门题)

    Requirements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3908   Accepted: 1318 Desc ...

  8. 某个点到其他点的曼哈顿距离之和最小(HDU4311)

    Meeting point-1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 4539 郑厂长系列故事――排兵布阵(曼哈顿距离)

    这虽然是中文题,然而没看懂,不懂的地方,就是在曼哈顿距离这块,网上搜索了一下,写了个程序,是测试曼哈顿距离的. 曼哈顿距离:两点(x1,y1)(x2,y2)的曼哈顿距离为|x1-x2|+|y1-y2| ...

随机推荐

  1. Java设计模式精讲之UML急速入门

    简单记录 - 慕课网 - Java设计模式精讲 Debug方式+内存分析 文章目录 第2章 UML急速入门 2-1.UML简单入门 UML定义 UML特点 UML 2.2分类 UML类图 理解泛化.实 ...

  2. mysql的导入

    方法1 load data [local] infile 'filename' into table tablename[option] ields terminated by 'string'(字段 ...

  3. SDUST数据结构 - chap4 串

    函数题: 6-1 查找子串: 裁判测试程序样例: #include <stdio.h> #define MAXS 30 char *search(char *s, char *t); vo ...

  4. ctfhub技能树—web前置技能—http协议—基础认证

    打开靶机环境 下载附件后发现是常用密码字典,于是考虑本题可能是考察密码爆破 打开环境 发现需要认证,于是考虑使用暴力破解 使用burpsuite抓包,查看 发现最下面一行有加密后的密文 使用base6 ...

  5. ORACLE查找占用临时表空间多的SESSION

    需要使用SYS用户登录查看 /* Formatted on 2020/12/30 上午 11:17:12 (QP5 v5.163.1008.3004) */ SELECT k.inst_id &quo ...

  6. 使用modify修改内表

    modify修改内表,有这样一种方式,MODIFY TABLE itab FROM wa [TRANSPORTING ..]. 然后这里的内表itab是有条件的,这个itab必须要有table key ...

  7. 5V充8.4V,5V升压8.4V给电池充电的芯片电路

    5V充8.4V的锂电池,需要把USB口的5V输入,升压转换成8.4V来给两串电池充电. 5V升压8.4V给锂电池充电的专门充电IC 集成了5V升压8.4V电路和充电管理电路的PL7501C 如果不需要 ...

  8. 特斯拉Toolbox诊断检测仪工具Tesla诊断电脑 Tesla Toolbox

    Tesla特斯拉Toolbox诊断工具Tesla诊断电脑检测仪 Tesla Toolbox, Tesla Toolbox Diagnostic Tester.Language: English,Deu ...

  9. python 编译EXE文件

    以labelme测试 标注工具labelimg和labelme 矩形标注工具:labelimg 多边形标准工具:labelme 前者官网发布了可执行文件,后者只有python源码,如果需要编译wind ...

  10. Property attribute.

    class property(object): """ Property attribute. fget function to be used for getting ...