POJ1743 Musical Theme

要找长度\(\ge 5\)且出现次数\(\ge 2\)并且第一次出现和最后一次出现不重叠的最长子串。

题目条件中,如果对于两个串,在一个串的每个数上都加上相同的数之后可以得到另一个串,那么这个两个串可以被是相同的。

首先我们先得到差分数组,然后要求的就是差分数组中长度\(\ge 4\)且出现次数\(\ge 2\)并且第一次出现和最后一次出现不重叠的最长子串

我们需要知道的是每个等价类中终点的最左端和最右端的位置,即(\(firstpos,lastpos\)),每次新加入一个字符所得到的等价类其\(firstpos\)和\(lastpos\)必然为当前的下标,当构造完\(SAM\)之后,由于\(parent\)树的性质,\(link[u]\)所表示的等价类必然是\(u\)所表示的等价类的后缀,所以可以得到:\(lastpos[u] = max_{v\in children} lastpos[v]\)其中\(v\)是\(u\)在\(parent\)树中的儿子,而\(firstpos\)必然一直保持不变。

可以用拓扑排序然后倒序遍历来代替建\(parent\)树然后\(dfs\),拓扑排序即为按\(len\)排序,用基数排序即可

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<string>
#include<algorithm>
#include<stack>
using namespace std;
void ____(){ ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); }
const int MAXN = 1e5+7;
int n,A[MAXN];
struct SAM{
int len[MAXN],link[MAXN],firstpos[MAXN],lastpos[MAXN],ch[MAXN][180],tot,last,cnt[MAXN],c[MAXN],sa[MAXN];
void init(){ link[tot = last = cnt[0] = len[0] = 0] = -1; memset(ch[0],0,sizeof(ch[0])); }
void extend(int x){
int np = ++tot, p = last; firstpos[tot] = lastpos[tot] = len[tot] = len[last] + 1;
memset(ch[tot],0,sizeof(ch[tot])); cnt[tot] = 1;
while(p!=-1 and !ch[p][x]){
ch[p][x] = np;
p = link[p];
}
if(p==-1) link[np] = 0;
else{
int q = ch[p][x];
if(len[p]+1==len[q]) link[np] = q;
else{
int clone = ++tot;
cnt[clone] = 0;
firstpos[clone] = firstpos[q];
lastpos[clone] = lastpos[q];
len[clone] = len[p] + 1;
for(int i = 0; i < 180; i++) ch[clone][i] = ch[q][i];
link[clone] = link[q];
while(p!=-1 and ch[p][x]==q){
ch[p][x] = clone;
p = link[p];
}
link[np] = link[q] = clone;
}
}
last = np;
}
int solve(){
for(int i = 0; i <= n; i++) c[i] = 0;
for(int i = 0; i <= tot; i++) c[len[i]]++;
for(int i = 1; i <= n; i++) c[i] += c[i-1];
for(int i = tot; i >= 0; i--) sa[c[len[i]]--] = i;
int ret = 0;
for(int i = tot+1; i >= 1; i--){ //这里要注意,基数排序的时候是0~tot,所以排名最后的是tot+1
int u = sa[i];
cnt[link[u]] += cnt[u];
lastpos[link[u]] = max(lastpos[link[u]],lastpos[u]);
ret = max(ret,min(len[u] + 1,lastpos[u]-firstpos[u]));
}
if(ret<5) ret = 0;
return ret;
}
}sam;
void solve(){
for(int i = 1; i <= n; i++) scanf("%d",&A[i]);
for(int i = 1; i < n; i++) A[i] = A[i+1] - A[i] + 88;
sam.init(); for(int i = 1; i < n; i++) sam.extend(A[i]);
printf("%d\n",sam.solve());
}
int main(){
while(scanf("%d",&n)!=EOF and n) solve();
return 0;
}

POJ 1743 Musical Theme【SAM】的更多相关文章

  1. POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】

    题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Su ...

  2. Poj 1743——Musical Theme——————【后缀数组,求最长不重叠重复子串长度】

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22499   Accepted: 7679 De ...

  3. poj 1743 Musical Theme【后缀自动机】

    不是很神的一道题,一般. 先差分,最后答案需要+1. 一个right集的len即为该right集的最长相同后缀,考虑到不能重复,所以处理一下该right集的最大与最小的ri,最后答案ans=max(a ...

  4. poj 1743 Musical Theme【二分+SA】

    差分,然后二分长度mid,判断是把height按照min不小于mid分组,取最大最小的sa位置看是否>=mid即可,注意差分后最后答案要+1 #include<iostream> # ...

  5. POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)

    永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...

  6. poj 1743 Musical Theme(最长重复子串 后缀数组)

    poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...

  7. Poj 1743 Musical Theme (后缀数组+二分)

    题目链接: Poj  1743 Musical Theme 题目描述: 给出一串数字(数字区间在[1,88]),要在这串数字中找出一个主题,满足: 1:主题长度大于等于5. 2:主题在文本串中重复出现 ...

  8. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

  9. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

随机推荐

  1. JavaScript高级程序设计(第4版)知识点总结

    介绍 JavaScript高级程序设计 第四版,在第三版的基础上添加了ES6相关的内容.如let.const关键字,Fetch API.工作者线程.模块.Promise 等.适合具有一定编程经验的 W ...

  2. 【MySQL 基础】MySQ LeetCode

    MySQL LeetCode 175. 组合两个表 题目描述 表1: Person +-------------+---------+ | 列名 | 类型 | +-------------+----- ...

  3. selenium爬虫 | 爬取疫情实时动态(二)

    '''@author:Billie更新说明:1-28 17:00 项目开始着手,spider方法抓取到第一条疫情数据,save_data_csv方法将疫情数据保存至csv文件1-29 13:12 目标 ...

  4. 【Oracle】从删除的recyclebin中查看并恢复数据

    如果数据库中用了drop删除表,后面没有加上purge的话,会出现在oracle的回收机制中 dba_recyclebin可以查看当前删除的都是哪些 这个只是部分截图,可以看到删除的对象是什么,删除的 ...

  5. 被集群节点负载不均所困扰?TKE 重磅推出全链路调度解决方案

    引言 在 K8s 集群运营过程中,常常会被节点 CPU 和内存的高使用率所困扰,既影响了节点上 Pod 的稳定运行,也会增加节点故障的几率.为了应对集群节点高负载的问题,平衡各个节点之间的资源使用率, ...

  6. 1.5V升压3V集成电路升压芯片

    干电池1.5V升压3V的升压芯片,适用于干电池升压产品输出3V供电 1.5V输入时,输出3V,电流可达500MA. PW5100是一款效率大.10uA低功耗 PW5100输入电压:0.7V-5V PW ...

  7. InnoDB事务篇

    1.解决数据更新丢失的问题 1)LBCC:基于锁的并发控制.让操作串行化执行.效率低. 2)MVCC:基于版本的并发控制.使用快照形式.效率高.读写不冲突.主流数据库都是使用的MVCC. 2.Inno ...

  8. Django orm中related_name/related_query_name区别

    related_name/related_query_name区别 class Department(models.Model): title = models.CharField(verbose_n ...

  9. Py变量,递归,作用域,匿名函数

    局部变量与全局变量 全局变量:全局生效的变量,在顶头的,无缩进的定义的变量. 局部变量:函数内生效的变量,在函数内定义的变量. name='1fh' def changename(): name='s ...

  10. b站视频_下载_去水印_视频转mp4-批量下载神器

    b站下载_视频_去水印_转mp4_批量下载的解决办法 以下问题均可解决 b站下载的视频如何保存到本地 b站下载的视频在那个文件夹里 b站下载视频转mp4 b站下载app b站下载在哪 b站下载视频电脑 ...