zjnu1745 DOMINE (状压dp+1*2铺砖)
Description
Mirko has a chessboard with N rows and just three columns. Slavica has written an integer on each field. Mirko has K dominoes at his disposal, their dimensions being 2x1, and has to arrange all of them on the board without overlapping, in a way that each
domino covers exactly two fields of the board. He can rotate the dominoes as he pleases.
Help Mirko cover the largest sum of numbers possible with the dominoes!
Input
The first line of input contains the integer N (1 ≤ N ≤ 1000), the number of rows, and K (1 ≤ K ≤ 1000), the number of dominoes available. Each of the following N lines contains three integers written in the ith row of the board. All numbers will be lesser
than 10^6 by absolute value
Output
The first and only line of output must contain the maximal sum possible to cover with exactly K dominoes.
Sample Input
2 1 -1
1 3 2
0 2 3
2 1 1
3 3 0
Sample Output
16
题意:给你一个n*3的矩阵,每一个格子都有对应的价值,让你在里面恰好铺满k块1*2的砖,可以竖着铺,也可以横着铺,问铺完k块砖后所能覆盖到的最大价值是多少。
思路:与poj2411全部铺满不同,这题可以不铺满,所以我们可以考虑每一层状态里0代表空缺没有铺,1代表这个格子铺过了,那么对于每一层,我们可以枚举这一层铺的状态,如果这一层有格子是竖着放的,那么我们要看看上一层的当前这个位置是不是0,如果是0就可以竖着放,我们枚举每一层的状态的时候,只考虑铺在当前这一行的格子以及可能占用上一层的砖,不考虑延伸到下一层的砖。这样我们就可以设dp[i][j][state]表示当前为i行,已经铺了k个砖,当前行的状态为state的能覆盖到的最大价值。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 1100000000
#define pi acos(-1.0)
#define maxn 1005
int dp[2][maxn][10]; //滚动数组,dp[i][j]表示前i行,选了j个,当前行状态为state的最大总价值
int sczt[20]={0,7,6,4,5,4,1,0,3,2,0,1,0}; //这里是上一层的状态
int jia[20]= {0,3,2,2,2,1,2,1,2,1,1,1,0}; //这里是用这个状态铺砖时,增加了多少砖块
int zt[20]= {0,7,6,7,5,4,7,6,3,2,3,1,0}; //这里是当前行的状态
int a[maxn][maxn];
int getsum(int h,int idx) //这里算的是增加多少价值
{
int i,j;
if(idx==1)return a[h][1]+a[h][2]+a[h][3]+a[h-1][1]+a[h-1][2]+a[h-1][3];
if(idx==2)return a[h][1]+a[h][2]+a[h-1][1]+a[h-1][2];
if(idx==3)return a[h][1]+a[h][2]+a[h][3]+a[h-1][1];
if(idx==4)return a[h][1]+a[h][3]+a[h-1][1]+a[h-1][3];
if(idx==5)return a[h][1]+a[h-1][1];
if(idx==6)return a[h][1]+a[h][2]+a[h][3]+a[h-1][3];
if(idx==7)return a[h][1]+a[h][2];
if(idx==8)return a[h][2]+a[h][3]+a[h-1][2]+a[h-1][3];
if(idx==9)return a[h][2]+a[h-1][2];
if(idx==10)return a[h][2]+a[h][3];
if(idx==11)return a[h][3]+a[h-1][3];
if(idx==12)return 0;
}
int main()
{
int n,k,i,j,len,val,state,t;
while(scanf("%d%d",&n,&k)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=3;j++){
scanf("%d",&a[i][j]);
}
}
for(j=1;j<=k;j++){
for(state=0;state<8;state++){
dp[1][j][state]=-inf;
}
}
dp[1][0][0]=0;
dp[1][1][6]=a[1][1]+a[1][2];
dp[1][1][3]=a[1][2]+a[1][3];
int tot=1;
for(i=2;i<=n;i++){
for(j=0;j<=k;j++){
for(state=0;state<8;state++){
dp[1^tot][j][state]=-inf;
}
}
for(j=0;j<=k;j++){
for(t=1;t<=12;t++){ //这里枚举的是12种这一行与上一行可能的状态,即第一个格子里竖着放,第一个格子横着放,第一个格子不放等状态
for(state=0;state<8;state++){ //枚举上层状态
if((sczt[t]&state)==0 ){
if(j+jia[t]<=k){
dp[1^tot][jia[t]+j ][zt[t] ]=max(dp[1^tot][jia[t]+j ][zt[t] ],dp[tot][j][state]+getsum(i,t) );
}
}
}
}
}
tot=1^tot;
}
int maxx=dp[tot][k][0];
for(state=1;state<8;state++){
maxx=max(maxx,dp[tot][k][state] );
}
printf("%d\n",maxx);
}
return 0;
}
zjnu1745 DOMINE (状压dp+1*2铺砖)的更多相关文章
- 状压DP天秀
状压DP,依靠的是把状态用某种压缩方式表示出来进而DP,大多数时候是二进制状压. 直接看例题吧. 一双木棋 九尾狐吃棉花糖 islands and bridges 愤怒的小鸟 芯片 ...
- 【XSY2745】装饰地板 状压DP 特征多项式
题目大意 你有\(s_1\)种\(1\times 2\)的地砖,\(s_2\)种\(2\times 1\)的地砖. 记铺满\(m\times n\)的地板的方案数为\(f(m,n)\). 给你\(m, ...
- poj1038 Bugs Integrated,Inc. (状压dp)
题意:N*M的矩阵,矩阵中有一些坏格子,要在好格子里铺2*3或3*2的地砖,问最多能铺多少个. 我的方法好像和网上流传的方法不太一样...不管了.... 由数据范围很容易想到状压dp 我们设某个状态的 ...
- 铺地砖|状压DP练习
有一个N*M(N<=5,M<=1000)的棋盘,现在有1*2及2*1的小木块无数个,要盖满整个棋盘,有多少种方式?答案只需要mod1,000,000,007即可. //我也不知道这道题的来 ...
- dp,状压dp等 一些总结
也就作业几题而已,分析一下提醒 最重要的就是,记住,没用的状态无论怎么转移最后都会是没用的状态,所以每次转移以后的有值的状态都是有用的状态. 几种思考方向: 第一种:枚举当前的状态,转移成另外一个状态 ...
- 【BZOJ2064】分裂 状压DP
[BZOJ2064]分裂 Description 背景:和久必分,分久必和...题目描述:中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力.同时经常搞OI的他把这个变成了一个 ...
- poj2411 Mondriaan's Dream[简单状压dp]
$11*11$格子板上铺$1*2$地砖方案.以前做过?权当复习算了,毕竟以前学都是浅尝辄止的..常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续 ...
- POJ 2411 Mondriaan's Dream ——状压DP 插头DP
[题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...
- [Poj2411]Mondriaan's Dream(状压dp)(插头dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18096 Accepted: 103 ...
随机推荐
- 深入理解nodejs中的异步编程
目录 简介 同步异步和阻塞非阻塞 javascript中的回调 回调函数的错误处理 回调地狱 ES6中的Promise 什么是Promise Promise的特点 Promise的优点 Promise ...
- Redis Cluster 集群节点维护 (三)
Redis Cluster 集群节点维护: 集群运行很久之后,难免由于硬件故障,网络规划,业务增长,等原因对已有集群进行相应的调整,比如增加redis nodes 节点,减少节点,节点迁移,更换服务器 ...
- 【二分搜索树】1、二分查找法的实现 - Binary Search
简单记录 - bobo老师的玩转算法系列–玩转算法 - 二分搜索树 二叉搜索树 Binary Search Tree 查找问题 Searching Problem 查找问题是计算机中非常重要的基础问题 ...
- SDUST数据结构 - chap2 线性表
一.判断题: 二.选择题: 三.编程题: 7-1 jmu-ds-顺序表区间元素删除 : 输入样例: 10 5 1 9 10 67 12 8 33 6 2 3 10 输出样例: 1 67 12 33 2 ...
- 面试时通过volatile关键字,全面展示线程内存模型的能力
面试时,面试官经常会通过volatile关键字来考核候选人在多线程方面的能力,一旦被问题此类问题,大家可以通过如下的步骤全面这方面的能力. 1 首先通过内存模型说明volatile关键字的作用 ...
- SAP中的F4帮助
今天在调试标准程序的时候,意外的发现了一个F4帮助的函数,感觉还是挺好用的. F4IF_FIELD_VALUE_REQUEST从函数名就可以看出是给字段添加F4帮助的. F4 help for fie ...
- [Usaco2005 Mar]Out of Hay 干草危机
题目描述 Bessie 计划调查N (2 <= N <= 2,000)个农场的干草情况,它从1号农场出发.农场之间总共有M (1 <= M <= 10,000)条双向道路,所有 ...
- Centos7.4 小白式安装(初学)
虚拟机安装Centos7.4系统 适用人群(初学者) 下载Centos7.4镜像 https://pan.baidu.com/s/1NtjfdHV3OWAvfDj5vrR7HQ 提取码:hzzw 虚 ...
- 相对论中的光速c不变,这么讲!你总能理解了吧!
今天谈谈相对论的假设基础--光速不变,很多人都知道爱因斯坦的相对论,也知道相对论的理论基础是光速不变,即无论参考哪个参照系,光的速度都是不变的,这个很难得理解的问题.我之前看过别人的理解,也自己思考怎 ...
- 【9k字+】第二篇:进阶:掌握 Redis 的一些进阶操作(Linux环境)
九 Redis 常用配置文件详解 能够合理的查看,以及理解修改配置文件,能帮助我们更好的使用 Redis,下面按照 Redis 配置文件的顺序依次往下讲 1k 和 1kb,1m 和 1mb .1g 和 ...