Hudi特性

  • 数据湖处理非结构化数据、日志数据、结构化数据

  • 支持较快upsert/delete, 可插入索引

  • Table Schema

  • 小文件管理Compaction

  • ACID语义保证,多版本保证 并具有回滚功能

  • savepoint 用户数据恢复的保存点

  • 支持多种分析引擎 spark、hive、presto

编译Hudi

git clone https://github.com/apache/hudi.git && cd hudi

mvn clean package -DskipTests

hudi 高度耦合spark

执行spark-shell测试Hudi

bin/spark-shell  --packages org.apache.spark:spark-avro_2.11:2.4.5   --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' --jars /Users/macwei/IdeaProjects/hudi-master/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.6.1-SNAPSHOT.jar

hudi 写入数据

// spark-shell
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._ val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator // spark-shell
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

读取hudi数据:

  val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath + "/*/*/*/*") tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot") spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show() +------------------+-------------------+-------------------+-------------+
| fare| begin_lon| begin_lat| ts|
+------------------+-------------------+-------------------+-------------+
| 64.27696295884016| 0.4923479652912024| 0.5731835407930634|1609771934700|
| 93.56018115236618|0.14285051259466197|0.21624150367601136|1610087553306|
| 33.92216483948643| 0.9694586417848392| 0.1856488085068272|1609982888463|
| 27.79478688582596| 0.6273212202489661|0.11488393157088261|1610187369637|
|34.158284716382845|0.46157858450465483| 0.4726905879569653|1610017361855|
| 43.4923811219014| 0.8779402295427752| 0.6100070562136587|1609795685223|
| 66.62084366450246|0.03844104444445928| 0.0750588760043035|1609923236735|
| 41.06290929046368| 0.8192868687714224| 0.651058505660742|1609838517703|
+------------------+-------------------+-------------------+-------------+ spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from hudi_trips_snapshot").show() +-------------------+--------------------+----------------------+---------+----------+------------------+
|_hoodie_commit_time| _hoodie_record_key|_hoodie_partition_path| rider| driver| fare|
+-------------------+--------------------+----------------------+---------+----------+------------------+
| 20210110225218|3c7ef0e7-86fb-444...| americas/united_s...|rider-213|driver-213| 64.27696295884016|
| 20210110225218|222db9ca-018b-46e...| americas/united_s...|rider-213|driver-213| 93.56018115236618|
| 20210110225218|3fc72d76-f903-4ca...| americas/united_s...|rider-213|driver-213|19.179139106643607|
| 20210110225218|512b0741-e54d-426...| americas/united_s...|rider-213|driver-213| 33.92216483948643|
| 20210110225218|ace81918-0e79-41a...| americas/united_s...|rider-213|driver-213| 27.79478688582596|
| 20210110225218|c76f82a1-d964-4db...| americas/brazil/s...|rider-213|driver-213|34.158284716382845|
| 20210110225218|73145bfc-bcb2-424...| americas/brazil/s...|rider-213|driver-213| 43.4923811219014|
| 20210110225218|9e0b1d58-a1c4-47f...| americas/brazil/s...|rider-213|driver-213| 66.62084366450246|
| 20210110225218|b8fccca1-9c28-444...| asia/india/chennai|rider-213|driver-213|17.851135255091155|
| 20210110225218|6144be56-cef9-43c...| asia/india/chennai|rider-213|driver-213| 41.06290929046368|
+-------------------+--------------------+----------------------+---------+----------+------------------+

对比

数据导入至hadoop方案: maxwell、canal、flume、sqoop

hudi是通用方案

  • hudi 支持presto、spark sql下游查询

  • hudi存储依赖hdfs

  • hudi可以当作数据源或数据库,支持PB级别

概念

Timeline: 时间戳

state:即时状态

原子写入操作

compaction: 后台协调hudi中差异数据

rollback: 回滚

savepoint: 数据还原

任何操作都有以下状态:

  • Requested 已安排操作行为,但是没有开始
  • Inflight 正在执行当前操作
  • Completed 已完成操作

hudi提供两种表类型:

  • CopyOnWrite 适用全量数据,列式存储,写入过程执行同步合并重写文件
  • MergeOnRead 增量数据,基于列式(parquet)和行式(avro)存储,更新记录到增量文件(日志文件),压缩同步和异步生成新版本文件,延迟更低

hudi查询类型:

  • 快照查询 查询最新快照表数据,如果是MergeOnRead表,动态合并最新版本基本数据和增量数据用于显示查询;如果是CopyOnWrite,直接查询Parquet表,同时提供upsert、delete操作
  • 增量查询 只能看到写入表的新数据
  • 优化读查询 给定时间段的一个查询

资料参考

数据湖-Apache Hudi的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. 基于Apache Hudi构建分析型数据湖

    为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特 ...

  3. Apache Hudi助力nClouds加速数据交付

    1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一 ...

  4. 官宣!ASF官方正式宣布Apache Hudi成为顶级项目

    马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apac ...

  5. Apache Hudi和Presto的前世今生

    一篇由Apache Hudi PMC Bhavani Sudha Saktheeswaran和AWS Presto团队工程师Brandon Scheller分享Apache Hudi和Presto集成 ...

  6. 划重点!AWS的湖仓一体使用哪种数据湖格式进行衔接?

    此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift查询Hudi表,现在它终于来了. 现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apa ...

  7. Halodoc使用 Apache Hudi 构建 Lakehouse的关键经验

    Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehou ...

  8. 使用 Apache Hudi 实现 SCD-2(渐变维度)

    数据是当今分析世界的宝贵资产. 在向最终用户提供数据时,跟踪数据在一段时间内的变化非常重要. 渐变维度 (SCD) 是随时间推移存储和管理当前和历史数据的维度. 在 SCD 的类型中,我们将特别关注类 ...

  9. 华为云 MRS 基于 Apache Hudi 极致查询优化的探索实践

    背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 Fusio ...

随机推荐

  1. Qt学习笔记-制作一个计算器-对话框Message Box

    在做计算器的前提先做一个加法器. 设计界面. 在点击计算的时候,获取前两个输入框中的数据相加后显示在第三个输入框. toInt是将字符串转换为数字.number静态函数是将数字转化为字符串. 加法器已 ...

  2. 新下载的Chrome 不能用,设置搜索引擎,谷歌浏览器不能用,chrome浏览器不能用,google chrome 不能用

    新下载的chrome默认搜索引擎 是google搜索,而google搜索引擎在国内是不能使用的,要设置为 百度或.360.搜狗搜索引擎才能使用. 设置方法如下: 1.打开 Chrome. 2.点击右上 ...

  3. Thread通信与唤醒笔记1

    synchronized if判断标记,只有一次,会导致不该信息的线程运行了,出现了数据错误的情况 while判断标记,解决了线程获取执行权之后,是否要运行! notify 只能唤醒一个任意线程,如果 ...

  4. Mysql大概1700W大表删除1000W左右数据,发现数据大小和索引大小并没有减少思考

    MySQL删除操作其实是假删除 因为近期在重构优化一个业务的时候 发现有一张表(send_log)数据量将近1700W 左右  占用数据大小17G,索引18G左右  而我们的核心应用在使用的时候 会去 ...

  5. jit编译原理

    jit用以把程序全部或部分翻译成本地机器码,当需要装载某个类[通常是创建第一个对象时],编译器会先找到其.class文件,然后将该类的字节码装入内存. hotspot采用惰性评估法: 如果一段代码频繁 ...

  6. Head First 设计模式 - 01. 策略 (Strategy) 模式

    当涉及到"维护"时,为了"复用"目的而使用继承,结局并不完美 P4 对父类代码进行修改时,影响层面可能会很大 思考题 利用继承来提供 Duck 的行为,这会导致 ...

  7. 【项目实践】SpringBoot三招组合拳,手把手教你打出优雅的后端接口

    以项目驱动学习,以实践检验真知 前言 一个后端接口大致分为四个部分组成:接口地址(url).接口请求方式(get.post等).请求数据(request).响应数据(response).如何构建这几个 ...

  8. day119:MoFang:宠物的状态改动&宠物粮道具的使用&宠物死亡处理

    目录 1.宠物的状态改动 2.宠物粮道具的使用 3.宠物死亡处理 1.宠物的状态改动 1.在setting表中为每个宠物配置生命周期时间 因为宠物有多个,每个宠物会有不同的初始生命的饥饿时间,所以我们 ...

  9. WEB开发框架性能排行与趋势分析2-三大惊喜变化

    WEB开发框架性能排行与趋势分析2-三大惊喜变化 Web框架性能排名 上一次基于TechEmpower的<Web Framework Benchmarks>性能基准测试的解读之后,时隔两年 ...

  10. 关于 percona monitoring plugins插件报slave is stoped on ip地址

    思路:肯定是某个item触发了触发器 去看触发器,找到 slave is stoped,如下图 看到键是mysql.running-slave ,然后去定义key的文件中查看该键对应的脚本,修改脚本. ...