算法学习笔记:Tarjan算法
在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实现。今天介绍的算法名叫Tarjan,同样是一个很奇怪的名字,奇怪就对了,这也是以人名命名的。和Kosaraju算法比起来,它除了名字更好记之外,另外一个优点是它只需要一次递归,虽然算法的复杂度是一样的,但是常数要小一些。它的知名度也更高,在竞赛当中经常出现。
先给大家提个醒,相比于Kosaraju算法,Tarjan算法更难理解一些。所以如果你看完本文没有搞明白的话,建议可以阅读一下上一篇文章。这两个算法的效果和复杂度都是一样的,其实学会一个就可以,没必要死磕。
算法数据结构 | 三个步骤完成强连通分量分解的Kosaraju算法

算法框架
我们来思考一个问题,对于强连通分量分解的算法来说,它的核心原理是什么?
如果你看过我们之前的文章,那么这个问题对你来说应该不难回答。既然是强连通分量,意味着分量当中每个点都可以互相连通。所以我们很容易可以想到,我们可以从一个点出发,找到一个回路让它再回到起点。这样途中经过的点就都是强连通分量的一部分。
但是这样会有一个问题,就是需要保证强连通分量当中的每个点都被遍历到,不能有遗漏。针对这个问题我们也可以想到解法,比如可以用搜索算法去搜索它所有能够达到的点和所有的路径。但是这样一来,我们又会遇到另外一个问题。这个问题就是强连通分量之间的连通问题。
我们来看个例子:
在上面这张图当中如果我们从点1出发,我们可以达到图中的每一个点。但是我们会发现1,2,3是一个强连通分量,4,5,6是另外一个。当我们寻找1所在的强连通分量的时候,很有可能会把4,5,6这三个点也带进来。但问题是它们是自成分量的,并不应该算在1的强连通分量当中。
我们整理一下上面的分析和思路可以发现强连通分量分解这个算法的核心其实就是解决这两个问题,就是完备性问题。完备意味着不能遗漏也不能冗余和错误,我们想明白核心问题所在之后就很容易搭建起思维框架,接下来我们再来看算法的描述会容易理解得多。

算法细节
Tarjan算法的第一个机制是时间戳,也就是在遍历的时候对每一个遍历到的点打上一个值。这个值表示这是第几个遍历的元素。
这个应该很好理解,我们只需要维护一个全局的变量,在遍历的时候去让它自增就可以了。我们来写下Python代码给大家演示一下:
stamp = 0
stamp_dict = {}
def dfs(u):
stamp_dict[u] = stamp
stamp += 1
for v in Graph[u]:
dfs(v)
通过时间戳我们可以知道每个点被访问的顺序,这个顺序是正向顺序。举个例子,比如说假设u和v两个点,u的时间戳比v小。那么它们之间的关系只有两种可能,第一种是u能够连通到v,说明从u到v的链路可以走通。第二种是u不能连通到v,这种情况不论反向的从v到u能否连通都不具有讨论意义,因为它们一定不能互相连通。
所以我们想要找到连通的通路还需要找到反向的路径,在Kosaraju算法当中我们是通过反向图来实现的。在Tarjan当中则采取了另外一种方法。因为我们已经知道各个点的时间戳了,我们完全可以通过时间戳来寻找反向的路径。什么意思呢?其实很简单,当我们在遍历u的时候如果遇到了一个比u时间戳更小的v,那么说明就存在一条反向的路径从u通向v。如果v这时候还没有出栈,意味着v是u的上游的话,那么也就说明存在一条路径从v通向u。这样就说明了u和v可以互相连通。
既然找到了一对互相连通的u和v,那么我们需要把它们记录下来。但问题是我们怎么知道记录到什么时候为止呢?这个边界在哪里?Tarjan算法设计了另外一个巧妙的机制解决了这个问题。
这个机制就是low机制,low[u]表示u这个点能够连通到的所有的点的时间戳的最小值。时间戳越小说明在搜索树当中的位置越高,也可以理解成u能够连通到的处在搜索树中最高的点。那么很明显了,这个点就是u这个点所在强连通分量所在搜索树某一棵子树的树根。
这里可能有一点点绕,我们再来看张图:
图中节点所在的序号就是递归遍历的时间戳,我们可以发现对于图上的每个点来说它们的low值都是1。很明显1这个点在搜索树当中是2,3,4这三个点的祖先。也就是说这一个强连通分量的遍历是从1这个点开始的。当1这个点出栈的时候,意味着以1位树根的子树已经遍历完了,所有可能存在的强连通分量也都已经找完了。
这就带来了另外一个问题,我们假设当前点是u,我们如何知道u这个点是否是图中1这样的树根呢?有没有什么办法可以标记出来呢?
当然是有的,这样的点有一个特性就是它们的时间戳等于它们的low。所以我们可以用一个数组维护找到的强连通分量,当这些强连通分量能够遍历到的树根出栈的时候,把数组清空。
我们把上面的逻辑整理一下就可以写出代码来了:
scc = []
stack = []
def tarjan(u):
dfn[u], low[u] = stamp, stamp
stamp += 1
stack.append(u)
for v in Graph[u]:
if not dfn[v]:
tarjan(v)
low[u] = min(low[u], low[v])
elif v in stack:
low[u] = min(low[u], dfn[v])
if dfn[u] == low[u]:
cur = []
# 栈中u之后的元素是一个完整的强连通分量
while True:
cur.append(stack[-1])
stack.pop()
if cur[-1] == u:
break
scc.append(cur)
// Cpp
int dfn[N], low[N], dfncnt, s[N], in_stack[N], tp;
int scc[N], sc; // 结点 i 所在 scc 的编号
int sz[N]; // 强连通 i 的大小
void tarjan(int u) {
low[u] = dfn[u] = ++dfncnt, s[++tp] = u, in_stack[u] = 1;
for (int i = h[u]; i; i = e[i].nex) {
const int& v = e[i].t;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (in_stack[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
++sc;
while (s[tp] != u) {
scc[s[tp]] = sc;
sz[sc]++;
in_stack[s[tp]] = 0;
--tp;
}
scc[s[tp]] = sc;
sz[sc]++;
in_stack[s[tp]] = 0;
--tp;
}
}

最后,我们来看一下之前讲过的经典例子:
首先我们从1点开始,一直深搜到6结束,当遍历到6的时候,DFN[6]=4,low[6]=4,当6出栈时满足条件,6独立称为一个强连通分量。
同理,当5退出的时候也同样满足条件,我们得到了第二个强连通分量。
接着我们回溯到节点3,节点3还可以遍历到节点4,4又可以连向1。由于1点已经在栈中,所以不会继续递归1点,只会更新low[4] = 1,同样当4退出的时候又会更新3,使得low[3] = 1。
最后我们返回节点1,通过节点1遍历到节点2。2能连通的4点已经在栈中,并且DFN[4] > DFN[2],所以并不会更新2点。再次回到1点之后,1点没有其他点可以连通,退出。退出的时候发现low[1] = DFN[1],此时栈中剩下的4个元素全部都是强连通分量。
到这里,整个算法流程的介绍就算是结束了,希望大家都可以enjoy今天的内容。
算法学习笔记:Tarjan算法的更多相关文章
- 学习笔记--Tarjan算法之割点与桥
前言 图论中联通性相关问题往往会牵扯到无向图的割点与桥或是下一篇博客会讲的强连通分量,强有力的\(Tarjan\)算法能在\(O(n)\)的时间找到割点与桥 定义 若您是第一次了解\(Tarjan\) ...
- [学习笔记] Tarjan算法求桥和割点
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...
- [学习笔记] Tarjan算法求强连通分量
今天,我们要探讨的就是--Tarjan算法. Tarjan算法的主要作用便是求一张无向图中的强连通分量,并且用它缩点,把原本一个杂乱无章的有向图转化为一张DAG(有向无环图),以便解决之后的问题. 首 ...
- C / C++算法学习笔记(8)-SHELL排序
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- [ML学习笔记] XGBoost算法
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...
- 学习笔记 - Manacher算法
Manacher算法 - 学习笔记 是从最近Codeforces的一场比赛了解到这个算法的~ 非常新奇,毕竟是第一次听说 \(O(n)\) 的回文串算法 我在 vjudge 上开了一个[练习],有兴趣 ...
- Johnson算法学习笔记
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
随机推荐
- maven 项目问题集锦
问题1: 新建的maven项目,没有src/main/java 源文件夹,创建时提示已经存在,创建不了 解决方法: 右键build path -> configure build path -& ...
- LeakCanary检测内存泄漏
内存泄漏原因: 线程造成的内存泄漏 Handler造成的内存泄漏 单例导致内存泄露 静态变量导致内存泄露 非静态内部类导致内存泄露 未取消注册(BroadcastReceiver )或回调导致内存泄露 ...
- Messenger实现进程间通信(IPC)
messenger内部也是实现aidl通信,所以可以看做一个轻量级aidl,但相对比较简单.首先开启一个服务并实现一个Handler用来处理消息,在onbind方法中返回IBinder对象,通过Ser ...
- spark load data from mysql
spark load data from mysql code first 本机通过spark-shell.cmd启动一个spark进程 SparkSession spark = SparkSessi ...
- VMware Workstation Pro 虚拟机安装CentOS-7
一.下载CentOS-7镜像 我是通过阿里开源镜像站下载的, 下载url:https://mirrors.aliyun.com/centos/7/isos/x86_64/ 下载CentOS-7-x86 ...
- Percona Toolkit工具连接MySQL 8报错的解决方案
使用Percona Toolkit的工具连接MySQL 8.x数据库时,会遇到类似"failed: Plugin caching_sha2_password could not be loa ...
- vue-cli2.0创建项目步骤
Vue是近两年来比较火的一个前端框架(渐进式框架吧),与reactjs和angularjs三国鼎立,我不是职业前端,做过Vue,了解了一下React,听说过Angluar.我只能这么说,我来晚了,没经 ...
- java数据结构-08队列
一.什么是队列 队列是一种特殊的线性表,只能在头尾两端进行操作,特点是先进先出:就像排队买票一样,先来的先买 二.接口设计 三.代码实现 可以使用动态数组.链表等实现:这里两种实现栈与双向链表 1. ...
- vue学习笔记(六) ----- vue组件
一.模块化与组件化 模块化的定义 模块化在Node中是一个规范,定义一些模块的相关的规则,从代码角度上来说,方便做区别,如果不使用模块化,写在js文件中不利于后期维护和扩展,从代码的层面上就把相关的功 ...
- vue-main.js中new vue()的解析
在main.js中,代码如下 import Vue from 'vue' import App from './App.vue' new Vue({ router, render: h => h ...