【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)
(这题在洛谷主站居然搜不到……还是在百度上偶然看到的)
题目描述
给一棵根为1的树,每次询问子树颜色种类数
输入输出格式
输入格式:
第一行一个整数n,表示树的结点数
接下来n-1行,每行一条边
接下来一行n个数,表示每个结点的颜色c[i]
接下来一个数m,表示询问数
接下来m行表示询问的子树
输出格式:
对于每个询问,输出该子树颜色数
说明
对于前三组数据,1<=m,c[i]<=n<=100
1<=m,c[i]<=n<=1e5
本来在学树上启发式合并,偶然看到这个题,就当模板来打了。
树上启发式合并(dsu on tree)是一种对静态子树节点信息的统计手段。和树上点分治一样,二者都是经过优化的暴力做法,启发式合并的复杂度可以从平方级别降到O(nlogn)。
启发式合并的思想源自暴力统计子树信息的过程。这题中,某棵树的每个点都有一个颜色,我们要多组询问统计某个点为根的子树内有多少种颜色。
这不是主席树乱搞嘛
考虑直接做这个题的话,我们想预处理出每个点的答案,可以直接从每个点出发做一次dfs统计得出答案后再dfs一遍,把它清空。这个显然的做法是O(n^2)的。
dsu on tree给出的优化策略是,我们想要统计某个点u,可以先遍历完它的轻儿子们,把这些点清空消去对重儿子的影响,后再去统计它的重儿子。这样得到的重儿子的信息我们还可以利用在u上,所以这时候我们保留重儿子的信息,再暴力地把它的轻儿子统计一遍来更新u的答案就可以了。
直观上看,每次特殊对待(只统计一次)的这个节点选择重儿子显然是最优的。启发式合并的复杂度经过证明可以达到O(nlogn);考虑每个点,这个点会被统计多少次呢?
1、通过轻边被扫到。根据轻重链的性质,这一步最多会有log次。
2、被遍历被扫到一次,或者藉由所在重链被扫到一次。是的,我们在合并的过程中遍历重链就像树剖的第二次dfs一样,每条重链只会被扫一次,因此这两种情况是O(1)的。
dsu on tree的复杂度得到了证明,我们可以愉快地用它来套做题了。需要强调的是,这个算法适用的是“静态统计子树信息”的问题。具体的遍历写法见代码:
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #include <cctype>
- #define maxn 100010
- using namespace std;
- template <class T>
- void read(T &x) {
- x = 0;
- char ch = getchar();
- while (!isdigit(ch))
- ch = getchar();
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- }
- int head[maxn], top = 1;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- int n, m;
- int cnt[maxn], color[maxn], son[maxn], size[maxn], ans[maxn], NowSon, sum;
- void dfs1(int u, int pre) { //预处理子树大小
- size[u] = 1;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre) continue;
- dfs1(v, u);
- size[u] += size[v];
- if (size[son[u]] < size[v])
- son[u] = v;
- }
- }
- void cal(int u, int pre, int val) { //计算答案
- if (!cnt[color[u]]) ++sum;//在当前树中统计这种颜色
- cnt[color[u]] += val;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == NowSon)//避开根的重儿子
- continue;
- cal(v, u, val);
- }
- }
- void dsu(int u, int pre, bool op) {//启发式合并的主体。op为 0表示这次操作由轻边遍历得到,需要清空
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == son[u])
- continue;
- dsu(v, u, 0);//轻儿子
- }
- if (son[u])
- dsu(son[u], u, 1), NowSon = son[u];//重儿子
- cal(u, pre, 1); NowSon = 0;//重新扫描轻儿子,二次统计
- ans[u] = sum;//那么现在的颜色数就是u的信息
- if (!op) {//清空当前的统计数
- cal(u, pre, -1);
- sum = 0;
- }
- }
- int main() {
- read(n);
- int u, v;
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(u, v), insert(v, u);
- }
- for (int i = 1; i <= n; ++i)
- read(color[i]);
- dfs1(1, 0);
- dsu(1, 0, 1);
- read(m);
- for (int i = 1; i <= m; ++i) {
- read(v);
- printf("%d\n", ans[v]);
- }
- return 0;
- }
【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)的更多相关文章
- 神奇的树上启发式合并 (dsu on tree)
参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...
- 树上启发式合并 (dsu on tree)
这个故事告诉我们,在做一个辣鸡出题人的比赛之前,最好先看看他发明了什么新姿势= =居然直接出了道裸题 参考链接: http://codeforces.com/blog/entry/44351(原文) ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)
题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...
- 【LUOGU???】WD与数列 sam 启发式合并
题目大意 给你一个字符串,求有多少对不相交且相同的子串. 位置不同算多对. \(n\leq 300000\) 题解 先把后缀树建出来. DFS 整棵树,维护当前子树的 right 集合. 合并两个集合 ...
- 【Luogu】P1903数颜色(带修改莫队)
题目链接 带修改莫队模板. 加一个变量记录现在是第几次修改,看看当前枚举的询问是第几次修改,改少了就改过去,改多了就改回来. 话说我栈用成队列了能过样例?!!!! 从此深信一句话:样例是出题人精心设计 ...
- 【CF600E】Lomset gelral 题解(树上启发式合并)
题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...
- 牛客练习赛47 E DongDong数颜色 (树上启发式合并)
链接:https://ac.nowcoder.com/acm/contest/904/E 来源:牛客网 DongDong数颜色 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 5242 ...
- luoguP3302 [SDOI2013]森林 主席树 启发式合并
题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...
随机推荐
- HelloGitHub 开源月刊(第 55 期):终端“百战天虫”,来战?
兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...
- margin 重叠问题深入探究
margin 重叠问题 Margin Collapse 块的上外边距(margin-top)和下外边距(margin-bottom)有时合并(重叠)为单个边距,其大小为单个边距的最大值(或如果它们相等 ...
- Kubernetes YAML最佳实践和策略
Kubernetes工作负载最常用YAML格式的文件来定义. YAML的问题之一就是很难描述清单文件之间的约束或关系. 如果你希望检查是否已从受信任的注册表中提取部署到群集中的所有映像,该怎么办? 如 ...
- MIT黑科技:通过手机记录的咳嗽数据检测是否感染新冠病毒
这次的新冠状病毒虽然没有2002年的SARS破坏力那么强悍,但其可怕之处是长时间的无症状潜伏,使得被感染者在不知情的情况下,将病毒散播出去.如果没有强有力的防疫手段,病毒的传播几乎难以控制.而防止病毒 ...
- ValueError: Unknown label type: 'continuous'
说明:SVM训练的标签列必须为整型数值,不能为float.y = np.array(y, dtype=int)或y.astype('int')
- SpringBoot中的classpath
一句话总结:classpath 等价于 main/java + main/resources + 第三方jar包的根目录.下面详细解释. 首先,classpath顾名思义,是编译之后项目的路径,而不是 ...
- Docker(4)- Docker 命令大全
如果你还想从头学起 Docker,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1870863.html 容器生命周期管理 run sta ...
- Java_数组, 懒得整理了 ---------------------> 未完, 待续
待续 public class TestArray { public static void main(String[] args) { String[] s1 = {"双儿", ...
- Kubernetes-17:Kubernets包管理工具—>Helm介绍与使用
Kubernets包管理工具->Helm 什么是Helm? 我们都知道,Linux系统各发行版都有自己的包管理工具,比如Centos的YUM,再如Ubuntu的APT. Kubernetes也有 ...
- 【Kubernetes学习笔记】-使用Minikube快速部署K8S单机学习环境
介绍 https://minikube.sigs.k8s.io/docs/ Minikube 用于快速在本地搭建 Kubernetes 单节点集群环境,它对硬件资源没有太高的要求,方便开发人员学习试用 ...