【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)
(这题在洛谷主站居然搜不到……还是在百度上偶然看到的)
题目描述
给一棵根为1的树,每次询问子树颜色种类数
输入输出格式
输入格式:
第一行一个整数n,表示树的结点数
接下来n-1行,每行一条边
接下来一行n个数,表示每个结点的颜色c[i]
接下来一个数m,表示询问数
接下来m行表示询问的子树
输出格式:
对于每个询问,输出该子树颜色数
说明
对于前三组数据,1<=m,c[i]<=n<=100
1<=m,c[i]<=n<=1e5
本来在学树上启发式合并,偶然看到这个题,就当模板来打了。
树上启发式合并(dsu on tree)是一种对静态子树节点信息的统计手段。和树上点分治一样,二者都是经过优化的暴力做法,启发式合并的复杂度可以从平方级别降到O(nlogn)。
启发式合并的思想源自暴力统计子树信息的过程。这题中,某棵树的每个点都有一个颜色,我们要多组询问统计某个点为根的子树内有多少种颜色。
这不是主席树乱搞嘛
考虑直接做这个题的话,我们想预处理出每个点的答案,可以直接从每个点出发做一次dfs统计得出答案后再dfs一遍,把它清空。这个显然的做法是O(n^2)的。
dsu on tree给出的优化策略是,我们想要统计某个点u,可以先遍历完它的轻儿子们,把这些点清空消去对重儿子的影响,后再去统计它的重儿子。这样得到的重儿子的信息我们还可以利用在u上,所以这时候我们保留重儿子的信息,再暴力地把它的轻儿子统计一遍来更新u的答案就可以了。
直观上看,每次特殊对待(只统计一次)的这个节点选择重儿子显然是最优的。启发式合并的复杂度经过证明可以达到O(nlogn);考虑每个点,这个点会被统计多少次呢?
1、通过轻边被扫到。根据轻重链的性质,这一步最多会有log次。
2、被遍历被扫到一次,或者藉由所在重链被扫到一次。是的,我们在合并的过程中遍历重链就像树剖的第二次dfs一样,每条重链只会被扫一次,因此这两种情况是O(1)的。
dsu on tree的复杂度得到了证明,我们可以愉快地用它来套做题了。需要强调的是,这个算法适用的是“静态统计子树信息”的问题。具体的遍历写法见代码:
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #include <cctype>
- #define maxn 100010
- using namespace std;
- template <class T>
- void read(T &x) {
- x = 0;
- char ch = getchar();
- while (!isdigit(ch))
- ch = getchar();
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- }
- int head[maxn], top = 1;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- int n, m;
- int cnt[maxn], color[maxn], son[maxn], size[maxn], ans[maxn], NowSon, sum;
- void dfs1(int u, int pre) { //预处理子树大小
- size[u] = 1;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre) continue;
- dfs1(v, u);
- size[u] += size[v];
- if (size[son[u]] < size[v])
- son[u] = v;
- }
- }
- void cal(int u, int pre, int val) { //计算答案
- if (!cnt[color[u]]) ++sum;//在当前树中统计这种颜色
- cnt[color[u]] += val;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == NowSon)//避开根的重儿子
- continue;
- cal(v, u, val);
- }
- }
- void dsu(int u, int pre, bool op) {//启发式合并的主体。op为 0表示这次操作由轻边遍历得到,需要清空
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || v == son[u])
- continue;
- dsu(v, u, 0);//轻儿子
- }
- if (son[u])
- dsu(son[u], u, 1), NowSon = son[u];//重儿子
- cal(u, pre, 1); NowSon = 0;//重新扫描轻儿子,二次统计
- ans[u] = sum;//那么现在的颜色数就是u的信息
- if (!op) {//清空当前的统计数
- cal(u, pre, -1);
- sum = 0;
- }
- }
- int main() {
- read(n);
- int u, v;
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(u, v), insert(v, u);
- }
- for (int i = 1; i <= n; ++i)
- read(color[i]);
- dfs1(1, 0);
- dsu(1, 0, 1);
- read(m);
- for (int i = 1; i <= m; ++i) {
- read(v);
- printf("%d\n", ans[v]);
- }
- return 0;
- }
【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)的更多相关文章
- 神奇的树上启发式合并 (dsu on tree)
参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...
- 树上启发式合并 (dsu on tree)
这个故事告诉我们,在做一个辣鸡出题人的比赛之前,最好先看看他发明了什么新姿势= =居然直接出了道裸题 参考链接: http://codeforces.com/blog/entry/44351(原文) ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)
题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...
- 【LUOGU???】WD与数列 sam 启发式合并
题目大意 给你一个字符串,求有多少对不相交且相同的子串. 位置不同算多对. \(n\leq 300000\) 题解 先把后缀树建出来. DFS 整棵树,维护当前子树的 right 集合. 合并两个集合 ...
- 【Luogu】P1903数颜色(带修改莫队)
题目链接 带修改莫队模板. 加一个变量记录现在是第几次修改,看看当前枚举的询问是第几次修改,改少了就改过去,改多了就改回来. 话说我栈用成队列了能过样例?!!!! 从此深信一句话:样例是出题人精心设计 ...
- 【CF600E】Lomset gelral 题解(树上启发式合并)
题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...
- 牛客练习赛47 E DongDong数颜色 (树上启发式合并)
链接:https://ac.nowcoder.com/acm/contest/904/E 来源:牛客网 DongDong数颜色 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 5242 ...
- luoguP3302 [SDOI2013]森林 主席树 启发式合并
题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...
随机推荐
- 循序渐进VUE+Element 前端应用开发(24)--- 修改密码的前端界面和ABP后端设置处理
用户在系统登录后,一般会提供一个入口给当前用户更改当前的密码,其实更改密码操作是很简单的一个处理,不过本篇随笔主要是介绍结合前后端来实现这个操作,后端是基于ABP框架的,需要对密码的安全性进行一个设置 ...
- Java Arrays 和 List的相互转化
最近在 leetcode 刷题的时候遇到过好几次这样的情况:需要返回的数据类型是数组(Arrays),但是求解的时候并不知道数组的长度,这时候就需要先用 List 进行临时存储,最后再转化为 Arra ...
- How to use vscode to build a springboot project
How to use vscode to build a springboot project 首先截图一个springboot官网的一个教程说明截图.可以根据这里的指南去创建一个HelloWorld ...
- PHP修改css文件中的背景图片并下载到本地
扒网站当中一般css中的图片扒不下来,这个脚本就是用来下载这些图片到本地的 流程 1.获取css文件路径 2.打开文件逐行读取判断是否包含需要的图片 2.1 包含则 -进行截取直接获取到相对路径 2. ...
- MYSQL字段
这里我的测试环境是wampserver 选择数据库 选择表 或者创建数据库和表 SHOW DATABASES; 查看数据库 CREATE DATABASE 数据库名; 创建数据库 在 MySQL 中, ...
- Pycharm激活码,最新2020Pycharm永久激活码!!!
分享一个Pycharm激活码给各位,是一个永久的Pycharm激活码~ 要是下边的这个Pycharm激活码失效了的话,大家可以关注微信公众号:Python联盟,然后回复"激活码"即 ...
- Java中的日期
Date类(java.util.Date) 时间原点:1970年1月1日 8点0分0秒. 创建日期对象: package blog; import java.util.Date; public cla ...
- .NET EF实现NoLock
sql实现方法: select * from 表名(nolock) 加上(nolock) EF实现办法: 程序集引用 System.Transactions ...
- VirtualBox 6 安装 CentOS 7
1 安装环境 windows7 Oracle VM VirtualBox 6.0.24 CentOS 7 2 VirtualBox 6 - 虚拟机软件 2.1 下载 Oracle VM Virtual ...
- 【译】关于Rust模块的清晰解释
原文链接: http://www.sheshbabu.com/posts/rust-module-system/ 原文标题: Clear explanation of Rust's module sy ...