题目链接

题意:

  • 给定\(n,x_0,a,b,p\),有递推式\(x_i = (a \cdot x_{i-1} +b)\%p\)。
  • 有\(Q\)个询问,每次询问给定一个\(v\),问是否存在一个最小的\(i\)使得\(x_i=v,i\in[0,n-1]\)成立
  • \(1\le n\le 1e18,0\le x_p,a,b<p\le 1e9+7,Q\le 1000,p\)是质数

大步小步(BSGS)学习:https://oi-wiki.org/math/bsgs/

刘汝佳白书数论中也有入门讲解

如果直接看递推式找不到关系可以先列出前几项

\(x_0 = x_0\quad x_1=ax_0+b\quad x_2=a^2x_0+ab+b\quad x_3=a^3x_0+a^2b+ab+b\)

\(x_4=a^4x_0+\sum_{i=0}^3a^ib\quad x_5=a^5x_0+\sum_{i=0}^4a^ib\quad x_6=a^6x_0+\sum_{i=0}^5a^ib\quad x_7=a^7x_0+\sum_{i=0}^6a^ib\)

\(\cdots\)

在BSGS中,\(a^x\equiv b\pmod p\)的求解是前求出前\(m\)项(\(m\)通常取\(\sqrt p\))的答案(即\(a^i\%p,i\in[0,m]\)),存在一个数组中便于查询(值和位置一般都要存),然后再从\([m+1,2m]\)中找答案,如果这一层中有答案那么也就是说\(a^{i+m} \equiv b\pmod p,i+m\in [m+1,2m])\)可以发现如果把指数上的\(m\)挪到右边,也就是相当于右侧乘了一个\(a^m\)的逆元,式子变成了\(a^i\equiv b\cdot a^{-m}\pmod p\),所以我们在考虑第二层中是否有答案时,只需要将\(b\)先成一次\(a^m\)的逆元,然后再从我们预处理出来的第一层的答案中寻找是否有解即可。

那么这个题该怎么像上面这个进行一样的操作呢?

我们观察一下,考虑完上一层之后接着考虑下一层的时候,给b乘\(a^m\)的逆元操作意味着什么?该操作可以理解为是除以\(a^m\),也就是将乘了\(m\)次\(a\)的操作复原了。基于复原思想,如何复原到m次操作之前的结果呢?

回看之前列出来的前8项,假设一层有4个,那么复原就相当于是将\(x_4\)变回\(x_0\)。

\[a^4x_0+a^3b+a^2b+ab+b \rightarrow x_0
\]
\[{a^4x_0+a^3b+a^2b+ab+b \over a^4} = x_0+\frac ba +\frac b{a^2}+\frac b{a^3}+\frac b{a^4}
\]

如果还看不出来,在列一下下一个

\[a^5x_0+a^4b+a^3b+a^2b+ab+b \rightarrow ax_0+b
\]
\[{a^5x_0+a^4b+a^3b+a^2b+ab+b \over a^4} = (ax_0+b)+\frac ba +\frac b{a^2}+\frac b{a^3}+\frac b{a^4}
\]

显然,先除以\(a^4\),然后再减去\(\frac ba +\frac b{a^2}+\frac b{a^3}+\frac b{a^4}\)即可。

其他处理就几乎和BSGS入门题一样了。

该题如果每次查询\(O(\sqrt p)\)的话会超时,所以我们通过加大预处理的范围去降低时间复杂度。(更多的部分是可以直接算出来存到数组里面的)采取\(O(\sqrt {Qp})\)也就是1e6的大小。

代码&程序流程梳理

  1. 特判a == 0,如果查询vx0要先输出0,等于b再输出1,否则输出-1(注意一下如果x0b,答案要首先输出0)
  2. 预处理前1e6的答案,存在pair里面之后排序,去重
  3. 计算\(a^{1e6}\)的逆元,还有我们复原需要减去的那一坨东西
  4. 然后从第一层开始找,二分查询位置,如果没找到就找下一层,如果发现现在找的位置大于等于n的话要及时结束查找。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1000000;
int T;
ll x0,n,a,b,p;
ll ksm(ll a,ll b){
ll res = 1;
for(;b;b>>=1){
if(b & 1)res = res*a%p;
a = a * a % p;
}
return res;
}
pair<int,int> node[maxn];
int pos[maxn],val[maxn];
int main(){
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld%lld",&n,&x0,&a,&b,&p);
int Q;scanf("%d",&Q);
if(a == 0){
while(Q--){
int v;scanf("%d",&v);
if(v == x0)
puts("0");
else if(v == b) puts("1");
else puts("-1");
}
continue;
}
ll now = x0;
int up = min(n,(ll)maxn);
for(int i=0;i<up;i++){
node[i] = {now,i};
now = (now * a + b) % p;
}
sort(node,node+up);
int m = 0;
for(int i=0;i<up;i++){
val[m] = node[i].first;
pos[m++] = node[i].second;
while(i < up - 1 && node[i].first == node[i+1].first)i++;
}
int inv_a = ksm(a,p-2);
int inv_b = (p-b)%p*inv_a%p;
ll bb = 0, aa = 1;
for(int i=0;i<maxn;i++){
aa = aa * inv_a % p;
bb = (bb * inv_a + inv_b) % p;
}
int r = p / maxn + 1;
while(Q--){
int v;scanf("%d",&v);
int id = lower_bound(val,val+m,v) - val;
if(id < m && val[id] == v){
printf("%d\n",pos[id]);continue;
}
if(n < maxn){
puts("-1");continue;
}
bool flag = false;
for(int i=1;i<=r;i++){
v = (aa * v + bb) % p;
int id = lower_bound(val,val+m,v) - val;
if(id < m && val[id] == v){
int res = pos[id] + i * maxn;
if(res >= n)puts("-1");
else printf("%d\n",res);
flag = true;break;
}
}
if(!flag)puts("-1");
}
}
return 0;
}

最后提一下,复原的时候也可以先减后乘逆元

那么循环里面bb的更新就变成

ll bb = 0, aa = 1;
for(int i=0;i<maxn;i++){
aa = aa * inv_a % p;
bb = (bb*a%p + b) % p;
}
//循环查找中v的更新
v = (v-bb+p)%p*aa%p;

2019牛客暑期多校训练营(第五场)C - generator 2 (BSGS)的更多相关文章

  1. 2019牛客暑期多校训练营(第五场) maximum clique 1

    题意:给出n个不相同的数,问选出尽量多的数且任两个数字二进制下不同位数大于等于2. 解法:能想到大于等于2反向思考的话,不难发现这是一个二分图,那么根据原图的最大团等于补图的最大独立点集,此问题就变成 ...

  2. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  3. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  4. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  5. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  6. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  7. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  8. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  9. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  10. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

随机推荐

  1. 解放双手,markdown文章神器,Typora+PicGo+七牛云图床实现自动上传图片

    本文主要分享使用Typora作为Markdown编辑器,PicGo为上传图片工具,使用七牛云做存储来解放双手实现图片的自动化上传与管理.提高写作效率,提升逼格.用过 Markdown 的朋友一定会深深 ...

  2. 了解一下RPC,为何诞生RPC,和HTTP有什么不同?

    了解一下RPC,为何诞生RPC,和HTTP有什么不同? 开篇提问 什么是RPC? 为什么需要RPC,用来解决什么问题? RPC与HTTP有什么不同? 你知道几种RPC? 认识RPC RPC:Remot ...

  3. LeetCode145 二叉树的后序遍历

    给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? /** * Defin ...

  4. nginx: [emerg] bind() to 0.0.0.0:80 failed (10013:

    问题出现 今天在win10安装nginx时候,启动nginx.exe时在dos窗口出现了这个错误,特此记录一下. 解决方法 上面报错信息的意思大概是:0.0.0:80地址访问不被允许.可能是80端口号 ...

  5. 【Java】变量

    变量 文章目录 变量 1.变量的概念 2.变量的三要素 3.变量的使用应该注意什么? 4.变量的声明和赋值.使用的语法格式? 5.code 1.变量的概念 变量的作用:变量用来存储数据. 变量的本质: ...

  6. mysql锁表问题

    查看当前所有的进程信息: show full processlist; 查看当前所有的事务 select * from information_schema.innodb_trx; 查看当前出现的锁 ...

  7. openpose c++ 配置教程 + python api

    之前有介绍过基于tensorflow的openpose版本安装,但是我觉得没有caffe框架那么好用,很多功能也实现不了,比如调节net_resolution的调节,通过调节分辨率来提高检测的精确性和 ...

  8. 1.2V转5V稳压芯片,低功耗电路

    PW5100具有将低输入电压0.7V-5V之间的范围,升压型,升压到5V的稳定电压输出. 可以使其镍氢电池1.2V稳定输出5V的1.2V转5V芯片. PW5100具有极低的输入静态功耗,1.2V时,应 ...

  9. AOP面向切面编程(使用注解和使用配置文件)

    Aop(面向切面编程) 使用注解的方式: 加入相应的jar包: com.springsource.org.aopalliance-1.0.0.jar com.springsource.org.aspe ...

  10. Bitter.Core系列三:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore ORM 之 示例模型创建

    在具体数据库操作之前,我们先准备好四张表以及相对应数据库操作模型: 学生表,年级表,班级表,学分表.示例数据库表,如下代码(MSSQL 为例) --学生表 CREATE TABLE t_student ...