题解 洛谷 P3298 【[SDOI2013]泉】
考虑到年份数很小,只有 \(6\),所以可以 \(2^6\) 来枚举子集,确定流量指数对应相同的位置,然后通过哈希和排序来计算相同的方案数。
但是这样计算出的是大于等于子集元素个数的方案数,所以还需要通过容斥来得到恰好为 \(k\) 的方案数。设子集元素个数为 \(num\),其容斥系数为 \((-1)^{num-k}\binom{num}{k}\),还需乘上组合数的原因是相同个数恰好为 \(num\) 的方案数对相同个数大于等于 \(k\) 的方案数的贡献为 \(\binom{num}{k}\)。
为了防止被卡,我这里用了双哈希来实现。
\(code:\)
#include<bits/stdc++.h>
#define maxn 100010
#define p1 998244353
#define p2 1000000007
#define b1 131
#define b2 137
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,k,ans;
ll a[maxn][10],C[10][10];
bool tag[6];
struct node
{
ll h1,h2;
}t[maxn];
bool cmp(const node &a,const node &b)
{
if(a.h1==b.h1) return a.h2<b.h2;
return a.h1<b.h1;
}
void init()
{
for(int i=0;i<=6;++i) C[i][0]=1;
for(int i=1;i<=6;++i)
for(int j=1;j<=i;++j)
C[i][j]=C[i-1][j]+C[i-1][j-1];
}
ll calc(int s)
{
for(int i=1;i<=n;++i) t[i].h1=t[i].h2=0;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=6;++j)
{
t[i].h1=(t[i].h1*b1%p1+a[i][j]*tag[j])%p1;
t[i].h2=(t[i].h2*b2%p2+a[i][j]*tag[j])%p2;
}
}
sort(t+1,t+n+1,cmp);
ll cnt=0,sum=0;
for(int i=2;i<=n;++i)
{
if(t[i].h1==t[i-1].h1&&t[i].h2==t[i-1].h2) cnt++,sum+=cnt;
else cnt=0;
}
return sum;
}
int main()
{
read(n),read(k),init();
for(int i=1;i<=n;++i)
for(int j=1;j<=6;++j)
read(a[i][j]);
for(int s=0;s<=63;++s)
{
int num=0;
for(int i=1;i<=6;++i)
{
if(s&(1<<(i-1))) num++,tag[i]=true;
else tag[i]=false;
}
if(num<k) continue;
ll val=calc(s)*C[num][k];
if((num-k)&1) ans-=val;
else ans+=val;
}
printf("%lld",ans);
return 0;
}
题解 洛谷 P3298 【[SDOI2013]泉】的更多相关文章
- [洛谷P3304] [SDOI2013]直径
洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...
- Bzoj3197/洛谷3296 [SDOI2013]刺客信条assassin(树的重心+树Hash+树形DP+KM)
题面 Bzoj 洛谷 题解 (除了代码均摘自喻队的博客,可是他退役了) 首先固定一棵树,枚举另一棵树,显然另一棵树只有与这棵树同构才有可能产生贡献 如果固定的树以重心为根,那么另一棵树最多就只有重心为 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
随机推荐
- shell编程之系统环境变量
点后面加上空格+配置文件等价于source 配置文件 常见的系统环境变量的配置 Bash_profile和.bashrc存在在家目录下,~表示家目录 [root@localhost home]# cd ...
- Flask02-Template
## 基础使用 $ vim app/templates/index.html > <html> > <head> > <title>{{title ...
- JavaScript基础对象创建模式之链式调用模式(Chaining Pattern)(029)
链式调用模式允许一个接一个地调用对象的方法.这种模式不考虑保存函数的返回值,所以整个调用可以在同一行内完成: myobj.method1("hello").method2().me ...
- JavaScript基础对象创建模式之私有属性和方法(024)
JavaScript没有特殊的语法来表示对象的私有属性和方法,默认的情况下,所有的属性和方法都是公有的.如下面用字面声明的对象: var myobj = { myprop: 1, getProp: f ...
- jQuery学习笔记(1)
什么是jQuery? jQuery是一个js库 jQuery的版本? jQuery1.x jQuery2.x(不支持IE6,7,8) jQuery作用? 简化js编写 将页面与js分离 常见的js库? ...
- 前端JS 下载大文件解决方案
问题场景 点击导出按钮,提交请求,下载excel大文件(超过500M),该文件没有预生成在后端, 直接以文件流的形式返回给前端. 解决方案 在Vue项目中常用的方式是通过axios配置请求,读取后端返 ...
- DBMS_METADATA.GET_DDL查出不存在的列SYS_C00014_20070116:47:09$
DBMS_METADATA.GET_DDL查出不存在的列SYS_C00014_20070116:47:09$ 前言 很久很久以前,有多久呢? 有多久了,等等我看下截图的日期(溜︿( ̄︶ ̄)︿). 哦, ...
- Log4j的使用说明
Log4j基本使用方法 Log4j由三个重要的组件构成:日志信息的优先级,日志信息的输出目的地,日志信息的输出格式.日志信息的优先级从高到低有ERROR.WARN. INFO.DEBUG,分别用来指定 ...
- Windows下的Linux系统
强调!!!必须是Windows专业版!!! 一.安装运行过程 第一步:打开开发人员模式 第二步:进入 '控制面板 '--'程序'--'启用的Windows功能'--勾选Linux子系统(根据提示进行重 ...
- Django---drf入门
目录 1 web开发模式 2 api接口 3 postman的使用 4 Restful规范(重点) 5 drf的安装和简单使用 3 cbv源码 4 APIView源码分析 1 web开发模式 #前后端 ...