考虑到年份数很小,只有 \(6\),所以可以 \(2^6\) 来枚举子集,确定流量指数对应相同的位置,然后通过哈希和排序来计算相同的方案数。

但是这样计算出的是大于等于子集元素个数的方案数,所以还需要通过容斥来得到恰好为 \(k\) 的方案数。设子集元素个数为 \(num\),其容斥系数为 \((-1)^{num-k}\binom{num}{k}\),还需乘上组合数的原因是相同个数恰好为 \(num\) 的方案数对相同个数大于等于 \(k\) 的方案数的贡献为 \(\binom{num}{k}\)。

为了防止被卡,我这里用了双哈希来实现。

\(code:\)

#include<bits/stdc++.h>
#define maxn 100010
#define p1 998244353
#define p2 1000000007
#define b1 131
#define b2 137
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,k,ans;
ll a[maxn][10],C[10][10];
bool tag[6];
struct node
{
ll h1,h2;
}t[maxn];
bool cmp(const node &a,const node &b)
{
if(a.h1==b.h1) return a.h2<b.h2;
return a.h1<b.h1;
}
void init()
{
for(int i=0;i<=6;++i) C[i][0]=1;
for(int i=1;i<=6;++i)
for(int j=1;j<=i;++j)
C[i][j]=C[i-1][j]+C[i-1][j-1];
}
ll calc(int s)
{
for(int i=1;i<=n;++i) t[i].h1=t[i].h2=0;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=6;++j)
{
t[i].h1=(t[i].h1*b1%p1+a[i][j]*tag[j])%p1;
t[i].h2=(t[i].h2*b2%p2+a[i][j]*tag[j])%p2;
}
}
sort(t+1,t+n+1,cmp);
ll cnt=0,sum=0;
for(int i=2;i<=n;++i)
{
if(t[i].h1==t[i-1].h1&&t[i].h2==t[i-1].h2) cnt++,sum+=cnt;
else cnt=0;
}
return sum;
}
int main()
{
read(n),read(k),init();
for(int i=1;i<=n;++i)
for(int j=1;j<=6;++j)
read(a[i][j]);
for(int s=0;s<=63;++s)
{
int num=0;
for(int i=1;i<=6;++i)
{
if(s&(1<<(i-1))) num++,tag[i]=true;
else tag[i]=false;
}
if(num<k) continue;
ll val=calc(s)*C[num][k];
if((num-k)&1) ans-=val;
else ans+=val;
}
printf("%lld",ans);
return 0;
}

题解 洛谷 P3298 【[SDOI2013]泉】的更多相关文章

  1. [洛谷P3304] [SDOI2013]直径

    洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...

  2. Bzoj3197/洛谷3296 [SDOI2013]刺客信条assassin(树的重心+树Hash+树形DP+KM)

    题面 Bzoj 洛谷 题解 (除了代码均摘自喻队的博客,可是他退役了) 首先固定一棵树,枚举另一棵树,显然另一棵树只有与这棵树同构才有可能产生贡献 如果固定的树以重心为根,那么另一棵树最多就只有重心为 ...

  3. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  6. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  7. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  8. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  9. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

随机推荐

  1. Flutter学习笔记(37)--动画曲线Curves 效果

    如需转载,请注明出处:Flutter学习笔记(37)--动画曲线Curves 效果

  2. 虹软人脸识别——官方 Qt Demo 移植到 Linux

    一.前言 最近需要在 Linux 平台下开发一个人脸识别相关的应用,用到了虹软的人脸识别 SDK.之前在 Windows 平台用过,感觉不错,SDK 里面还带了 Demo 可以快速看到效果.打开 Li ...

  3. 新来的"大神"用策略模式把if else给"优化"了,技术总监说:能不能想好了再改?

    本文来自作者投稿,原作者:上帝爱吃苹果 目前在魔都,贝壳找房是我的雇主,平时关注一些 java 领域相关的技术,希望你们能在这篇文章中找到些有用的东西.个人水平有限,如果文章有错误还请指出,在留言区一 ...

  4. Spark HA搭建

    正文 下载Spark版本,这版本又要求必须和jdk与hadoop版本对应. http://spark.apache.org/downloads.html tar -zxvf 解压到指定目录,进入con ...

  5. Redis高级特性介绍以及实例分析

    Redis基础类型回顾 转自:http://www.jianshu.com/p/af7043e6c8f9 String Redis中最基本,也是最简单的数据类型.注意,VALUE既可以是简单的Stri ...

  6. vue全家桶(1)

    1.环境搭建 1.1.脚手架搭建 1.1.1什么是脚手架 百度搜索一下脚手架长什么样子,它们是这样的: 从百度百科抄过来一段话: 脚手架是为了保证各施工过程顺利进行而搭设的工作平台.如果明白了脚手架在 ...

  7. DOM-BOM-EVENT(5)

    5.宽.高.位置相关 5.1.clientX/clientY clientX和clientY表示鼠标在浏览器可视区的坐标位置 <script> document.onclick = fun ...

  8. linux 测试端口是否可通

    windows上一般用telnet 如telnet ip port linux上可以用telnet,跟windows一样 telnet ip port 也可以用wget:如:wget ip:port ...

  9. paramiko报错 Garbage packet received

    前情概要 今天想要写一个多进程的python脚本上传代码至服务器,于是在本地用虚拟机测试了一下,可总是报错,具体报错信息如下 Traceback (most recent call last): Fi ...

  10. Java1.7的HashMap源码分析-面试必备技能

    HashMap是现在用的最多的map,HashMap的源码可以说是面试必备技能,今天我们试着分析一下jdk1.7下的源码. 先说结论:数组加链表 一.先看整体的数据结构 首先我们注意到数据是存放在一个 ...