fibonacci all in one
fibonacci all in one
fibonacci sequence
https://www.mathsisfun.com/numbers/fibonacci-sequence.html
fibonacci number
https://en.wikipedia.org/wiki/Fibonacci_number
"use strict";
/**
*
* @author xgqfrms
* @license MIT
* @copyright xgqfrms
* @created 2020-09-30
* @modified
*
* @description fibonacci all in one
* @difficulty Easy
* @complexity O(n)
* @augments
* @example
* @link https://www.cnblogs.com/xgqfrms/p/13757617.html
* @link https://www.freecodecamp.org/learn/ fibo
* @link https://www.freecodecamp.org/learn/coding-interview-prep/project-euler/problem-2-even-fibonacci-numbers
* @solutions
*
* @best_solutions
*
*/
const log = console.log;
// 1. 递归
// 2. 迭代
// 3. 性能优化 cache
1. 递归
fibonacci 递归
// 1. 递归
function fibonacci(n) {
if(n > 0) {
if (n === 1 || n === 2) {
return 1;
} else {
return fibonacci(n - 1) + fibonacci(n - 2);
}
} else {
throw new Error(`N must bigger than 0!`);
}
}
``
## 2. 迭代
> fibonacci 迭代
```js
// 2. 迭代
function fibonacci(n) {
if (n === 1 || n === 2) {
return 1;
} else {
let sum = 2;
let temp1 = 1;
let temp2 = 1;
while(n > 2) {
sum = temp1 + temp2;
// swap
temp1 = temp2;
temp2 = sum;
n--;
}
return sum;
}
}
3. 性能优化 cache
fibonacci memory 缓存优化
// 性能优化 cache
function fibonacci(n, memo) {
if(n < 0) {
throw new Error(`N must bigger than 0!`);
}
var memo = memo || {}
// ReferenceError: Cannot access 'memo' before initialization
// let memo = memo || {}
if (memo[n]) {
return memo[n];
}
if (n <= 2) {
return 1;
}
// if (n <= 1) {
// return 1;
// }
return memo[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo);
}
fibonacci sequence vs 杨辉三角
https://zh.wikipedia.org/wiki/杨辉三角形
杨辉三角形,又称帕斯卡三角形、贾宪三角形、海亚姆三角形、巴斯卡三角形,是二项式系数的一种写法,形似三角形;
在中国首现于南宋杨辉的《详解九章算法》得名,书中杨辉说明是引自贾宪的《释锁算书》,故又名贾宪三角形。前 9 行写出来如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
refs
https://www.cnblogs.com/xgqfrms/p/12909516.html
xgqfrms 2012-2020
www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!
fibonacci all in one的更多相关文章
- 算法与数据结构(九) 查找表的顺序查找、折半查找、插值查找以及Fibonacci查找
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找 ...
- #26 fibonacci seqs
Difficulty: Easy Topic: Fibonacci seqs Write a function which returns the first X fibonacci numbers. ...
- 关于java的递归写法,经典的Fibonacci数的问题
经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...
- 斐波拉契数列(Fibonacci) 的python实现方式
第一种:利用for循环 利用for循环时,不涉及到函数,但是这种方法对我种小小白来说比较好理解,一涉及到函数就比较抽象了... >>> fibs = [0,1] >>&g ...
- fibonacci数列(五种)
自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
- Fibonacci 数列算法分析
/************************************************* * Fibonacci 数列算法分析 ****************************** ...
- 算法系列:Fibonacci
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- UVa #11582 Colossal Fibonacci Numbers!
巨大的斐波那契数 The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and ...
- Buge's Fibonacci Number Problem
Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, ...
随机推荐
- ubuntu更新下载软件卡住0% [Connecting to archive.ubuntu.com (2001:67c:1360:8001::23)]
一台ubuntu系统,查看硬件和配置环境的时候发现下载卡住了 根据提示就是有ipv6地址,系统也是配置了ipv6地址的.海外机器,而且可以ping通域名 最佳解决方案 我想出了如何让apt-get再次 ...
- 解决 win10 无法安装VS2019,visual studio installer下载进度始终为0
解决 win10 无法安装VS2019,visual studio installer下载进度始终为0 目录 解决 win10 无法安装VS2019,visual studio installer下载 ...
- Qt 自动化测试Test cutedriver
示例 https://github.com/nomovok-opensource/cutedriver-examples CuteDriver examples This repository con ...
- 能够满足这样要求的哈希算法有很多,其中比较著名并且应用广泛的一个哈希算法,那就是MurmurHash 算法。尽管这个哈希算法在 2008 年才被发明出来,但现在它已经广泛应用到 Redis、MemCache、Cassandra、HBase、Lucene 等众多著名的软件中。
能够满足这样要求的哈希算法有很多,其中比较著名并且应用广泛的一个哈希算法,那就是MurmurHash 算法.尽管这个哈希算法在 2008 年才被发明出来,但现在它已经广泛应用到 Redis.MemCa ...
- loj10010糖果传递
题目描述 原题来自:HAOI 2008 有 n 个小朋友坐成一圈,每人有 a_i 颗糖果.每人只能给左右两人传递糖果.每人每次传递一颗糖果的代价为 1 .求使所有人获得均等糖果的最小代价. 输入格式 ...
- hbuilder使用技巧总结
HBuilder是DCloud(数字天堂)推出的一款支持HTML5的Web开发IDE.HBuilder的编写用到了Java.C.Web和Ruby.HBuilder本身主体是由Java编写,它基于Ecl ...
- sql注入-原理&防御
SQL注入是指web应用程序对用户输入数据的合法性没有判断或过滤不严,攻击者可以在web应用程序中事先定义好的查询语句的结尾上添加额外的SQL语句,在管理员不知情的情况下实现非法操作,以此来实现欺骗数 ...
- SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量
SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量 1. ScalikeJDBC 2.配置文件 3.导入依赖的jar包 4.源码测试 通过MySQL保存kafka的偏移量 ...
- 动态代理+静态代理+cglib代理 详解
代理定义:代理(Proxy):是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象.好处是:可以在目标对象实现的基础上,增强额外的功能操作,即扩展目标对象的功能. 动态代理+静态 ...
- jackson学习之九:springboot整合(配置文件)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 系列文章汇总 jackson学习之一:基本信息 jac ...