题目

题目描述

今天,接触信息学不久的小\(A\)刚刚学习了卡特兰数。

卡特兰数的一个经典定义是,将\(n\)个数依次入栈,合法的出栈序列个数。

小\(A\)觉得这样的情况太平凡了。于是,他给出了\(m\)组限制,每个限制形如\((f_i,g_i)\),表示\(f_i\)不能在\(g_i\)之后出栈。

他想求出:在满足了这\(m\)组限制的前提下,共有多少个合法的出栈序列。他不喜欢大数,你只需要求出答案在模\(998244353\)意义下的值即可。

输入格式

输入第一行为两个非负整数,\(n\)、\(m\),含义题面已给出。

接下来\(m\)行,每行两个正整数,\((f,g)\) 表示一组限制。

输出格式

输出一行,为一个非负整数,表示你求得的答案 \(mod\space 998244353\)。

样例输入

3 1
2 3

样例输出

3

样例解释

可以验证\(\{1,2,3\}\),\(\{2,1,3\}\),\(\{2,3,1\}\)都是合乎条件的。

数据规模

\(编号\) \(分值\) \(n\) \(m\) \(特殊性质\)
\(1\) \(15\) \(\le 300\) \(= 0\)
\(2\) \(15\) \(\le 7\) \(\le 10\)
\(3\) \(15\) \(\le 100\) \(\le 50\)
\(4\) \(15\) \(\le 300\) \(保证所有的f_i相同\)
\(5\) \(20\) \(\le 300\) \(\le 300\)
\(6\) \(20\) \(\le 300\)

对于全部的数据,保证\(n\le 300\),\(m\le \frac{n(n-1)}{2}\),\(f_i、g_i \le n\)。

题解

题目大意:\(n\)个数以此入栈,问在满足\(m\)个形如\(f_i\)不能在\(g_i\)后出栈的限制的出栈序列数

45%

我们知道卡特兰数有个推导公式是\(f_i=\sum_{i=1}^nf_i\times f_{n-i-1}\),这个公式实际上是枚举了最后出栈的数

那么扩展到这题,我们将\(dp\)转换为区间\(dp\),枚举\(k\)为最后出栈的数,那么有两种情况不合法:\(f=k\)或者\(f>k>g\)。当\(f=k\)的时候,\(f\)是最后出栈的,显然不合法。而我们知道,小于\(k\)总是比大于\(k\)的先出栈,所以当\(f>k>g\)时也是不合法的

设\(f[i][j]\)表示\(i\)到\(j\)这个区间的合法出栈序列,那么在上述两种不合法的情况不成立的情况下,\(f[i][j]+=f[i][k-1]\times f[k+1][j]\)

时间复杂度\(O(n^3m)\),预计得分\(45\)

100%

考虑优化\(dp\),在\(O(1)\)的时间内判断合不合法。不合法条件\(f>k>g\)成立,说明\(f>g\),那么在读入时\(f>g\)的放入平面直角坐标系中,坐标\((f,g)\),那么可以前缀和优化

记录前缀和\(sm[i][j]\)和\(l[i][j]\),分别记录\(f>g\)以及所有的点,用来判断\(f>k>g\)和\(f=k\)的情况

构造一个矩形

其中\(i,j,k\)分别是区间起点,终点,以及最后出栈的数

\(f=k\)说明\(l[k][j]-l[k][i-1]>0\),而如果矩形\(sm(i,i,j,k-1)-sm(i,i,k,j)>0\),说明有\(f>k>g\)的情况,这两种情况都是不合法的

这样的话时间复杂度优化到了\(O(n^3)\),预计得分\(100\)

Code

#include<cstdio>
#define mod 998244353
#define N 310
#define ll long long
using namespace std;
ll n,m,f[N][N],sm[N][N],al[N][N];
ll get(ll x,ll y,ll p,ll q) {return sm[x][y]-sm[x][q-1]-sm[p-1][y]+sm[p-1][q-1];}
int main()
{
freopen("catalan.in","r",stdin);
freopen("catalan.out","w",stdout);
scanf("%lld%lld",&n,&m);
for (ll i=1,x,y;i<=m;++i)
{
scanf("%lld%lld",&x,&y);
if (x!=y)
{
if (x>y) ++sm[x][y];
++al[x][y];
}
}
for (ll i=1;i<=n;++i)
for (ll j=1;j<=n;++j)
{
sm[i][j]=sm[i][j]+sm[i-1][j]+sm[i][j-1]-sm[i-1][j-1];
al[i][j]=al[i][j]+al[i][j-1];
}
for (ll i=1;i<=n;++i)
f[i][i]=f[i+1][i]=f[i][i-1]=1;
for (ll len=2;len<=n;++len)
for (ll i=1;i+len-1<=n;++i)
{
ll j=i+len-1;
for (ll k=i;k<=j;++k)
{
ll x;
if (k>i) x=get(j,k-1,i,i)-get(k,j,i,i);
else x=0;
ll y=al[k][j]-al[k][i-1];
if (x<=0&&y<=0) f[i][j]=(f[i][j]+f[i][k-1]*f[k+1][j]%mod)%mod;
}
}
printf("%lld\n",f[1][n]);
fclose(stdin);
fclose(stdout);
return 0;
}

【2020.12.01提高组模拟】卡特兰数(catalan)的更多相关文章

  1. 【2020.12.01提高组模拟】A组反思

    105,rk45 T1 赛时一开始先打了\(m=0\)的情况,也就是普通的卡特兰数,然后打了暴力,样例过了,把样例改改就不行了,原因没有保证是枚举的是合法的出栈序列 得分:\(WA\&TLE1 ...

  2. 【2020.12.02提高组模拟】球员(player)

    题目 题目描述 老师们已经知道学生喜欢睡觉,Soaring是这项记录保持者.他只会在吃饭或玩FIFA20时才会醒来.因此,他经常做关于足球的梦,在他最近的一次梦中,他发现自己成了皇家马德里足球俱乐部的 ...

  3. 【2020.12.03提高组模拟】A组反思

    估计:40+10+0+0=50 实际:40+10+0+0=50 rank40 T1 赛时看到\(n,m\leq9\),我当机立断决定打表,暴力打了几个点之后发现在\(n\ne m\)且\(k\ne0\ ...

  4. 【2020.12.02提高组模拟】A组反思

    55,rk47 T1 赛时先想了\(trie\),想到不一定是前缀,然后就放弃转为打暴力 得分:\(RE22\) 正解是只用判断\(i\)与\(i+1\)的关系,那么只有两种情况,判断一下然后\(dp ...

  5. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  6. 【2020.11.28提高组模拟】T2 序列(array)

    序列(array) 题目描述 ​给定一个长为 \(m\) 的序列 \(a\). 有一个长为 \(m\) 的序列 \(b\),需满足 \(0\leq b_i \leq n\),\(\sum_{i=1}^ ...

  7. 【2020.11.30提高组模拟】剪辣椒(chilli)

    剪辣椒(chilli) 题目描述 在花园里劳累了一上午之后,你决定用自己种的干辣椒奖励自己. 你有n个辣椒,这些辣椒用n-1条绳子连接在一起,任意两个辣椒通过用若干个绳子相连,即形成一棵树. 你决定分 ...

  8. 【2020.11.30提高组模拟】删边(delete)

    删边(delete) 题目 题目描述 给你一棵n个结点的树,每个结点有一个权值,删除一条边的费用为该边连接的两个子树中结点权值最大值之和.现要删除树中的所有边,删除边的顺序可以任意设定,请计算出所有方 ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. HashMap的初始化,到底都做了什么?

    HashMap的初始化,到底都做了什么? HashMap初始化参数都是什么?默认是多少? 为什么建议初始化设置容量? tableSizeFor方法是做什么的? 如何获取到一个key的hash值?及计算 ...

  2. 构建者模式(Builder pattern)

    构建者模式应用场景: 主要用来构建一些复杂对象,这里的复杂对象比如说:在建造大楼时,需要先打牢地基,搭建框架,然后自下向上地一层一层盖起来.通常,在建造这种复杂结构的物体时,很难一气呵成.我们需要首先 ...

  3. dhcp、tftp、httpd、pxe安装CentOS6.9

    虚拟机网络设置 要xshell连接虚拟机注意设置VMware Network Adapter VMnet2在同一网段 1.利用光盘配置本地yum源 [root@ZYB ~]# mount -r /de ...

  4. 【Kata Daily 190929】Password Hashes(密码哈希)

    题目: When you sign up for an account somewhere, some websites do not actually store your password in ...

  5. 正式班D25

    2020.11.09星期一 正式班D25 目录 13.7 LVM 13.7.1 lvm简介 13.7.2 lvm基本使用 13.7.3 在线动态扩容 13.7.4 在线动态缩容与删除 13.7.5 快 ...

  6. 如何将别人Google云端硬盘中的数据进行保存

    查了好久终于知道! 如何将别人Google云端硬盘中的数据进行copy,而不是右键发现只有添加快捷方式 只要shift+z就可以保存了! 之后等我弄清楚怎么将别人家的云盘中的数据集导到colab再来详 ...

  7. 转载:Pycharm的常用快捷键

    一直想着找一下pycharm的快捷键,但是每次都忘记找了,这次刚好碰到一个很全的,就直接借用别人的来当作自己的笔记ba 转载来源:https://www.cnblogs.com/liangmingsh ...

  8. CSS三大特性及权重叠加

    层叠性: 1.样式冲突,遵循的原则是就近原则,哪个样式离结构近,就执行哪个样式 2.样式不冲突,不会层叠 继承性: 子标签会继承父标签的某些样式,如文本颜色和字号 优先级: 当同一个元素指定多个选择器 ...

  9. C\C++语言重点——指针篇 | 为什么指针被誉为 C 语言灵魂?(一文让你完全搞懂指针)

    本篇文章来自小北学长的公众号,仅做学习使用,部分内容做了适当理解性修改和添加了博主的个人经历. 注:这篇文章好好看完一定会让你掌握好指针的本质! 看到标题有没有想到什么? 是的,这一篇的文章主题是「指 ...

  10. maven pom.xml 报错

    首先介绍背景,在eclipse中导入一个maven的项目,在我之前的电脑上导入好用,在自己的电脑上导入居然pom报错了Missing artifact junit:junit:jar:4.11,还会有 ...