一、实验:完成一个简单的时间片轮转多道程序内核代码

LinuxKernel/linux-3.9.4目录下查看mymain.c和myinterrupt.c的代码,为了完成实验,需将其中代码进行相应修改。

未修改mymain.c中的代码:



未修改的myinterrupt.c代码:



通过对教材的理解和GitHub上代码的查看,对两个文件进行相应的代码修改。

对mymain.c进行相应的修改,这里是mykernel内核代码的入口,负责初始化内核的各个组成部分。以下为相应修改后的代码:

#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;
void my_process(void);
void __init my_start_kernel(void)
{
int pid = 0;
int i;
/* Initialize process 0*/
task[pid].pid = pid;
task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid];
/*fork more process */
for(i=1;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
/* start process 0 by task[0] */
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */
"pushl %1\n\t" /* push rbp */
"pushl %0\n\t" /* push task[pid].thread.ip */
"ret\n\t" /* pop task[pid].thread.ip to rip */
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
} int i = 0; void my_process(void)
{
while(1)
{
i++;
if(i%10000000 == 0)
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == 1)
{
my_need_sched = 0;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}

接下来修改myinterrupt.c,主要是增加了进程切换的代码my_schedule(void)函数。修改后代码如下:

#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0; /*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = 1;
}
time_count ++ ;
return;
} void my_schedule(void)
{
tPCB * next;
tPCB * prev; if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to next process */
asm volatile(
"pushl %%rbp\n\t" /* save rbp of prev */
"movl %%rsp,%0\n\t" /* save rsp of prev */
"movl %2,%%rsp\n\t" /* restore rsp of next */
"movl $1f,%1\n\t" /* save rip of prev */
"pushl %3\n\t"
"ret\n\t" /* restore rip of next */
"1:\t" /* next process start here */
"popl %%rbp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}

然后增加一个mypch.h,用来定义进程控制块,代码如下:

#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
unsigned long ip;
unsigned long sp;
}; typedef struct PCB{
int pid;
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long stack[KERNEL_STACK_SIZE];
/* CPU-specific state of this task */
struct Thread thread;
unsigned long task_entry;
struct PCB *next;
}tPCB; void my_schedule(void);

最后make重新编译。

二、学习总结

1.堆栈相关的寄存器

ESP:堆栈指针

EBP:基址指针

2.堆栈操作

堆栈主要用到的操作是push和pop,在上一章的课程中已经熟悉。

3.其他关键寄存器

了解了CS寄存器。一般程序都至少会用到标准库,整个程序会有多个代码段。

*顺序执行:总是指向地址连续的下一套指令。

*跳转/分支:执行这样的指令时,CS:EIP的值会根据程序需要被修改。

*call:将当前CS:EIP的值压入栈顶,CS:EIP指向被调用函数的入口地址。

*ret:从栈顶弹出原来保存在这里的CS:EIP的值,放入CS:EIP中。

4.用堆栈来传递函数的参数

对32位x86CPU来讲,通过堆栈来传递参数的方法时从右到左依次压栈。

5.了解了函数如何传递返回值,堆栈还提供局部变量的空间,编译器使用堆栈的规则。

三、学习总结和遇到的问题

第二章的学习让我了解了计算机的三个法宝:存储程序计算机、函数调用堆栈机制和中断机制;学习了借助linux内核部分源代码模拟存储程序计算机工作模型及时钟中断。

思考了一个问题:为什么应用程序不能直接访问硬件而是通过操作系统?

原因是计算机运行时,内核是被信任的第三方,只有内核可以执行特权指令。这是为了方便应用程序。

2020-2021-1 20209306 《linux内核原理与分析》第三周作业的更多相关文章

  1. 20169212《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 这一周学习了MOOCLinux内核分析的第一讲,计算机是如何工作的?由于本科对相关知识的不熟悉,所以感觉有的知识理解起来了有一定的难度,不过多查查资 ...

  2. 20169210《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 本周作业分为两部分:第一部分为观看学习视频并完成实验楼实验一:第二部分为看<Linux内核设计与实现>1.2.18章并安装配置内核. 第 ...

  3. 2018-2019-1 20189221 《Linux内核原理与分析》第九周作业

    2018-2019-1 20189221 <Linux内核原理与分析>第九周作业 实验八 理理解进程调度时机跟踪分析进程调度与进程切换的过程 进程调度 进度调度时机: 1.中断处理过程(包 ...

  4. 2017-2018-1 20179215《Linux内核原理与分析》第二周作业

    20179215<Linux内核原理与分析>第二周作业 这一周主要了解了计算机是如何工作的,包括现在存储程序计算机的工作模型.X86汇编指令包括几种内存地址的寻址方式和push.pop.c ...

  5. 2019-2020-1 20199329《Linux内核原理与分析》第九周作业

    <Linux内核原理与分析>第九周作业 一.本周内容概述: 阐释linux操作系统的整体构架 理解linux系统的一般执行过程和进程调度的时机 理解linux系统的中断和进程上下文切换 二 ...

  6. 2019-2020-1 20199329《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 一.上周问题总结: 未能及时整理笔记 Linux还需要多用 markdown格式不熟练 发布博客时间超过规定期限 二.本周学习内容: <庖丁解 ...

  7. 2019-2020-1 20209313《Linux内核原理与分析》第二周作业

    2019-2020-1 20209313<Linux内核原理与分析>第二周作业 零.总结 阐明自己对"计算机是如何工作的"理解. 一.myod 步骤 复习c文件处理内容 ...

  8. 2018-2019-1 20189221《Linux内核原理与分析》第一周作业

    Linux内核原理与分析 - 第一周作业 实验1 Linux系统简介 Linux历史 1991 年 10 月,Linus Torvalds想在自己的电脑上运行UNIX,可是 UNIX 的商业版本非常昂 ...

  9. 《Linux内核原理与分析》第一周作业 20189210

    实验一 Linux系统简介 这一节主要学习了Linux的历史,Linux有关的重要人物以及学习Linux的方法,Linux和Windows的区别.其中学到了LInux中的应用程序大都为开源自由的软件, ...

  10. 2018-2019-1 20189221《Linux内核原理与分析》第二周作业

    读书报告 <庖丁解牛Linux内核分析> 第 1 章 计算工作原理 1.1 存储程序计算机工作模型 1.2 x86-32汇编基础 1.3汇编一个简单的C语言程序并分析其汇编指令执行过程 因 ...

随机推荐

  1. python3 函数的参数

    函数的参数 形参(函数定义时) + 实参(函数调用时) 形参:形式参数 在函数的定义处定义的参数,比如def func(参数1, 参数2, 参数3...) 普通参数(位置参数), 默认参数,普通收集参 ...

  2. Orchard Core创建CMS/Blog站点

    安装.NET Core SDK 下载并安装当前最新版本.NET Core SDK 3.1: https://dotnet.microsoft.com/download 安装visual studio ...

  3. C# 中居然也有切片语法糖,太厉害了

    一:背景 1. 讲故事 昨天在 github 上准备找找 C# 9 又有哪些新语法糖可以试用,不觉在一个文档上看到一个很奇怪的写法: foreach (var item in myArray[0..5 ...

  4. CMake 常用命令

    cmake是现在主流的用于多平台C++构建系统,本文用来记录cmake的一些常用命令的索引,加上一些自己理解,理解有误的话,欢迎大家指出. 常用路径 CMAKE_SOURCE_DIR: 顶级cmake ...

  5. Java多线程--原子性、可见性、有序性

    计算机的内存模型: 计算机在运行行程序的时候,指令由CPU执行,计算机上数据存放在物理内存当中,CPU在执行指令的时候免不了要和数据打交道.刚开始,还相安无事的,但是随着CPU技术的发展,CPU的执行 ...

  6. Sublime Text3 for Java 编译运行环境配置 入门详解 - 精简归纳

    Sublime Text3 for Java 编译运行环境配置 入门详解 - 精简归纳 JERRY_Z. ~ 2020 / 9 / 24 转载请注明出处!️ 目录 Sublime Text3 for ...

  7. python类,魔术方法等学习&&部分ssti常见操作知识点复习加深

    python类学习&&部分ssti常见操作知识点复习加深 在做ssti的模块注入的时候经常觉得自己python基础的薄弱,来学习一下,其实还是要多练习多背. 在python中所有类默认 ...

  8. NoActionBar主题下如何添加OptionsMenu

    菜单无法显示 为了不显示标题栏,所以主题使用了 NoActionBar,这也直接导致选项菜单无处显示 解决方案 添加一个ToolBar,自定义标题栏 <androidx.appcompat.wi ...

  9. 日志分析平台ELK之日志收集器filebeat

    前面我们了解了elk集群中的logstash的用法,使用logstash处理日志挺好的,但是有一个缺陷,就是太慢了:当然logstash慢的原因是它依赖jruby虚拟机,jruby虚拟机就是用java ...

  10. Linux系统编程—信号集操作函数

    先来回顾一下未决信号集是怎么回事. 信号从产生到抵达目的地,叫作信号递达.而信号从产生到递达的中间状态,叫作信号的未决状态.产生未决状态的原因有可能是信号受到阻塞了,也就是信号屏蔽字(或称阻塞信号集, ...