1. itertools.product  进行数据的多种组合

intertools.product(range(0, 1), range(0, 1))  组合的情况[0, 0], [0, 1], [1, 0], [1, 1]

2. confusion_matrix(test_y, pred_y)  # 构造混淆矩阵

混淆矩阵是TP(正的预测成正的), FP(正的预测成负的), TN(负的预测成负的), FN(负的预测成正的)

从混淆矩阵中,我们可以很清楚的看出这个信息,这是一个信用欺诈的案例, 134表示的是将欺诈的预测出来的数值, 13表示的是将欺诈的预测成正常的, 131表示的是将正常的预测成正常的,18表示将正常的预测成欺诈的

精度: (134 + 131) / (134+131+13+18)

召回率: (134) / (134 + 13)

F1得分 : (1 / (精度 + 召回率))

代码:使用的是一个下采样的欺诈数据的代码,使用confusion_matrix 获得混合矩阵,然后使用plt.imshow() 进行画图操作

best_c = printing_KFold_score(under_train_x, under_train_y)

import itertools
# 画出混淆矩阵, 导入confusion_matrix
def plot_matrix(conf, classes,
title='confusion matrix', cmap=plt.cm.Blues):
# 展示直方图
plt.imshow(conf, cmap=cmap)
# 图片标题
plt.title(title)
# 图片颜色条
plt.colorbar()
# 设置x轴和y轴位置
x_index = np.array(classes)
# 第一个参数是位置,第二个参数是标签名
plt.xticks(x_index, classes, rotation=0)
plt.yticks(x_index, classes)
conf_mean = conf.max() / 2
# itertools.product
# [0, 1] & [0, 1]
# [0, 0], [0, 1], [1, 0], [1, 1]
# 将数字添加到混合矩阵中
for i, j in itertools.product(range(conf.shape[0]), range(conf.shape[1])):
plt.text(j, i, conf[i, j], horizontalalignment='center',
color='white'if conf[i, j] > conf_mean else 'black')
# 画出的图更加的紧凑
plt.tight_layout() from sklearn.metrics import confusion_matrix
# 建立逻辑回归模型
lr = LogisticRegression(C=best_c, penalty='l1')
# 模型训练
lr.fit(under_train_x, under_train_y)
# 模型预测
pred_y = lr.predict(under_text_x)
# 获得混合矩阵
conf = confusion_matrix(under_test_y, pred_y)
# 画图
plot_matrix(conf, classes=[0, 1])
# accrurracy
# 精度
accurracy = (conf[0, 0] + conf[1, 1]) / (conf[0, 0] + conf[0, 1] + conf[1, 0] + conf[1, 1])
# 召回率
recall = conf[1, 1] / (conf[1, 0] + conf[1, 1])
# F1得分
F1_score = 1 / (accurracy + recall)
plt.show()

机器学习入门-混淆矩阵-准确度-召回率-F1score 1.itertools.product 2. confusion_matrix(test_y, pred_y)的更多相关文章

  1. Andrew Ng机器学习课程笔记--week6(精度&召回率)

    Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好 ...

  2. 混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

    原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. ...

  3. 机器学习入门-概率阈值的逻辑回归对准确度和召回率的影响 lr.predict_proba(获得预测样本的概率值)

    1.lr.predict_proba(under_text_x)  获得的是正负的概率值 在sklearn逻辑回归的计算过程中,使用的是大于0.5的是正值,小于0.5的是负值,我们使用使用不同的概率结 ...

  4. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  5. 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

    准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...

  6. 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC

    评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...

  7. 混淆矩阵、准确率、召回率、ROC曲线、AUC

    混淆矩阵.准确率.召回率.ROC曲线.AUC 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共 ...

  8. 机器学习入门-交叉验证选择参数(数据切分)train_test_split(under_x, under_y, test_size, random_state), (交叉验证的数据切分)KFold, recall_score(召回率)

    1. train_test_split(under_x, under_y, test_size=0.3, random_state=0)  # under_x, under_y 表示输入数据, tes ...

  9. 机器学习-Confusion Matrix混淆矩阵、ROC、AUC

    本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型 ...

随机推荐

  1. B树就想到这个

    比如要查找60 先在根结点中查,根结点里面有 17  35这2个关键字, 60 > 35,则从右边开始查找 p3指针开始查找 ,  到了第二层的最右边的那个结点开始查找 , 里面有  65  8 ...

  2. 用复制mysql/data 文件夹 下面的数据库的形式来复制数据库出现的问题

    用复制mysql/data 文件夹 下面的数据库的形式来复制数据库出现的问题 提示找不到表,我去看了一下,丢失了很多个表: 问题: 直接拷贝data下的数据库数据进行备份 , 发现部分数据表不见了. ...

  3. 【转】每天一个linux命令(48):watch命令

    原文网址:http://www.cnblogs.com/peida/archive/2012/12/31/2840241.html watch是一个非常实用的命令,基本所有的Linux发行版都带有这个 ...

  4. linq to sql 项目移植后,数据库实体类需要重新创建?

    项目中,使用LINQ to SQL 访问数据库,代码移植到其他机器上,每次需要重新生成dbml文件,有无方法只要更改app.config呢? 经过试验是可行的: 1.引用system.configur ...

  5. winform datagridview 不显示默认第一列 不显示未绑定列 数据源发生改变时自动更新 (转)

    不显示带星号的第一列: datagridview属性框中将 RowHeadersVisiber 设置为  false 不显示未绑定列: datagridview有一个属性是 AutoGenerateC ...

  6. 从Vue文件到Html文件

    如下图,通过webpack打包工具,将一个Vue文件生成html,css,js文件.其中js对应的是new Vue({})

  7. C# 监听HTTP请求(遇到的一些问题)

    先把代码放在这里,下面再详细解说: using Newtonsoft.Json; using Newtonsoft.Json.Linq; using Oracle.DataAccess.Client; ...

  8. Cenots7对lvm逻辑卷分区大小的调整

    Cenots7对lvm逻辑卷分区大小的调整 (针对xfs和ext4不同文件系统) 1.支持的文件系统类型 特别注意的是: resize2fs命令            针对的是ext2.ext3.ex ...

  9. 【android】 adb logcat命令查看并过滤android输出log

    cmd命令行中使用adb logcat命令查看android系统和应用的log,dos窗口按ctrl+c中断输出log记录. logcat日志中的优先级/tag标记: android输出的每一条日志都 ...

  10. Eclipse: the import java.util cannot be resolved

    the import java.util cannot be resolved 导入JRE System Library. 右键项目 Build Path Configure Build Path.. ...