原博来自http://www.cnblogs.com/skywang12345/

弗洛伊德算法介绍

和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

基本思想

通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。 
第1步:初始化S。 
    矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。 
    注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。 
    以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。

同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。

弗洛伊德算法的代码说明

以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

 // 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

Graph是邻接矩阵对应的结构体。 
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2. 弗洛伊德算法

 /*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* G -- 图
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp; // 初始化
for (i = ; i < G.vexnum; i++)
{
for (j = ; j < G.vexnum; j++)
{
dist[i][j] = G.matrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
} // 计算最短路径
for (k = ; k < G.vexnum; k++)
{
for (i = ; i < G.vexnum; i++)
{
for (j = ; j < G.vexnum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
} // 打印floyd最短路径的结果
printf("floyd: \n");
for (i = ; i < G.vexnum; i++)
{
for (j = ; j < G.vexnum; j++)
printf("%2d ", dist[i][j]);
printf("\n");
}
}

完整代码可以见:http://www.wutianqi.com/?p=1903

弗洛伊德算法(Floyd算法)的更多相关文章

  1. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  2. [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]

    最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...

  3. 只有5行代码的算法——Floyd算法

    Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3).具体方法是:设点i到点j的距离为d[i][ ...

  4. 图的最短路径算法-- Floyd算法

    Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...

  5. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  6. (转)最短路算法 -- Floyd算法

    转自:http://blog.51cto.com/ahalei/1383613        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程 ...

  7. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  8. 一步步学算法(算法分析)---6(Floyd算法)

    Floyd算法 Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命 ...

  9. 最短路径:Dijkstra & Floyd 算法图解,c++描述

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 最短路径算法——Dijkstra算法与Floyd算法

    转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2  ...

随机推荐

  1. Qt中layout()->setSizeConstraint(QLayout::SetFixedSize);崩溃的问题

    编译环境: win764位,vs2008编译器,cbd调试器,qt4.8 背景: 按照<C++ Gui Qt4编程>书中第二章的一个例子(sortDialog)一步步抄完,编译运行,显示不 ...

  2. Ubuntu系统下查看显卡相关信息

    查看显卡信息 root@ubuntu:/home/ubuntu# lspci |grep -i vga 02:00.0 VGA compatible controller: NVIDIA Corpor ...

  3. web前端----JavaScript的BOM

    一.引入 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和 ...

  4. MySQL数据库----存储过程

    存储过程 存储过程包含了一系列可执行的sql语句,存储过程存放于MySQL中,通过调用它的名字可以执行其内部的一堆sql -- 存储过程的优点: -- 1.程序与数据实现解耦 -- 2.减少网络传输的 ...

  5. 轻量级文本标记语言-Markdown

    Markdown简介 接触过github的都知道,在发布项目的时候可以建立一个说明文件README.md,这个md文件就是Markdown文本编辑语言的文件. Markdown 是一种轻量级标记语言, ...

  6. #if 1...#endif

    1. “#if 0/#if 1 ... #endif”的作用,我们知道,C标准不提供C++里的“//”这样的单行风格注释而只提供“/* */”这样的块注释功能,我们通常使用它写代码中说明性的注释文字( ...

  7. myeclipse中文名字项目运行报错

    今天由于项目进行分支,负责开发迭代的功能对应不同的分支项目,没想到的是分支项目名称加上了功能的中文名字.要使用了resin发布项目的时候,报了 java.io.CharConversionExcept ...

  8. Elasticsearch 基础概念知识

    接近实时(NRT) Elasticsearch是一个接近实时的搜索平台.这意味着,从索引一个文档直到这个文档能够被搜索到有一个轻微的延迟(通常是1秒). 集群(cluster) 一个集群就是由一个或多 ...

  9. Stream API

    引例: 1 List<String> strList = Arrays.asList("zhaojigang","nana","tiany ...

  10. 51nod 1266 蚂蚁

    蚂蚁这道题 就是 不管两只蚂蚁相撞  他们会朝自己的反方向走 不过可以这么想  有蚂蚁1 和 蚂蚁2   并且相向而行 如果撞了以后 蚂蚁1和蚂蚁2 就往回走   ,这里可以理解成蚂蚁1,蚂蚁2 继续 ...